Abstract

We conducted Z-scan measurements using ultrashort high-repetition-rate lasers and spectroscopic-grade fused-quartz cuvettes that had undergone macroscopic laser-induced damage in the course of the measurements. Visual observation of increased scattering of the laser beam from the damaged sites and Nomarski microscope images showing changes in the morphology of the damaged regions were used as the criteria for damage. Intensity- dependent open- and closed-aperture Z-scan studies produced profiles that are characteristic of the extent of the damage. The appearance of these unique signatures in any high-repetition-rate Z-scan measurement is a useful marker for timely recognition of occasional collateral damages that are associated with this type of study.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
    [CrossRef]
  2. D. Vincent, S. Petit, and S. L. Chin, “Optical limiting studies in carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944–2946 (2002).
    [CrossRef] [PubMed]
  3. F. E. Hernández, W. Shensky III, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, “Viscosity dependence of optical limiting in carbon black suspensions,” Appl. Opt. 41, 1103–1107 (2002).
    [CrossRef] [PubMed]
  4. C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
    [CrossRef] [PubMed]
  5. F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
    [CrossRef]
  6. W. H. Lowderemilk and D. Milan, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. 17, 1888–1903(1981).
    [CrossRef]
  7. V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975).
    [CrossRef]
  8. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
    [CrossRef]
  9. C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
    [CrossRef] [PubMed]
  10. D. W. Fradin, E. Yablonovitch, and M. Bass, “Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 μm,” Appl. Opt. 12, 700–709 (1973).
    [CrossRef] [PubMed]
  11. D. W. Fradin, N. Bloembergen, and J. P. Letellier, “Dependence of laser-induced breakdown field strength on pulse duration,” Appl. Phys. Lett. 22, 635–637 (1973).
    [CrossRef]
  12. L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009).
    [CrossRef]
  13. N. L. Boling, M. D. Crisp, and G. Dube, “Laser-induced surface damage,” Appl. Opt. 12, 650–660 (1973).
    [CrossRef] [PubMed]
  14. M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
    [CrossRef]
  15. E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
    [CrossRef]
  16. N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
    [CrossRef]
  17. E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M.G.Kuzyk and C.W.Dirk, eds. (Marcel Dekker, 1998), pp. 655–692.
  18. A. A. Tesar, B. A. Fuchs, and P. P. Hed, “Examination of the polished surface character of fused silica,” Appl. Opt. 31, 7164–7172 (1992).
    [CrossRef] [PubMed]
  19. T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010).
    [CrossRef]
  20. B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
    [CrossRef]
  21. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002).
    [CrossRef] [PubMed]
  22. C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
    [CrossRef]
  23. M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
    [CrossRef]
  24. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurements using high repetition lasers: how to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
    [CrossRef] [PubMed]
  25. R. de Nalda, R. del Coso, J. Requejo-Isidro, J. Olivares, A. Suarez-Garcia, J. Solis, and C. N. Afonso, “Limits to the determination of the nonlinear refractive index by the Z-scan method,” J. Opt. Soc. Am. B 19, 289–296 (2002).
    [CrossRef]
  26. Y. A. Repeev, “Two-photon absorption in fused quartz and in water at the wavelength of 212.8 nm,” Quantum Electron. 24, 897–899 (1994).
    [CrossRef]
  27. A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
    [CrossRef]
  28. S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).
  29. A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34, 3374–3376(1995).
    [CrossRef] [PubMed]
  30. A. Starke and A. Bernhardt, “Laser damage threshold measurement according to ISO 11254: experimental realization at 1064 nm,” Proc. SPIE 2114, 212–219 (1994).
    [CrossRef]

2010

T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010).
[CrossRef]

2009

L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009).
[CrossRef]

2005

2004

B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

2003

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

2002

2001

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

2000

1999

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

1998

C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

1995

1994

Y. A. Repeev, “Two-photon absorption in fused quartz and in water at the wavelength of 212.8 nm,” Quantum Electron. 24, 897–899 (1994).
[CrossRef]

A. Starke and A. Bernhardt, “Laser damage threshold measurement according to ISO 11254: experimental realization at 1064 nm,” Proc. SPIE 2114, 212–219 (1994).
[CrossRef]

1992

1990

M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

1989

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

1981

W. H. Lowderemilk and D. Milan, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. 17, 1888–1903(1981).
[CrossRef]

1975

V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975).
[CrossRef]

1974

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

1973

1971

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
[CrossRef]

Afonso, C. N.

Bass, M.

Bernhardt, A.

A. Starke and A. Bernhardt, “Laser damage threshold measurement according to ISO 11254: experimental realization at 1064 nm,” Proc. SPIE 2114, 212–219 (1994).
[CrossRef]

Bertussi, B.

B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Bloembergen, N.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

D. W. Fradin, N. Bloembergen, and J. P. Letellier, “Dependence of laser-induced breakdown field strength on pulse duration,” Appl. Phys. Lett. 22, 635–637 (1973).
[CrossRef]

Boling, N. L.

Braunlich, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Carr, C. W.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

Casper, R. T.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Chin, S. L.

Cohanoschi, I.

Commandre, M.

B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Crisp, M. D.

de Nalda, R.

del Coso, R.

Demos, S. G.

A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002).
[CrossRef] [PubMed]

Dogariu, A.

Dorsinville, R.

A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
[CrossRef]

Dube, G.

Etienne, M.

A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
[CrossRef]

Falconieri, M.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

Feit, M. D.

T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010).
[CrossRef]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

Fradin, D. W.

D. W. Fradin, N. Bloembergen, and J. P. Letellier, “Dependence of laser-induced breakdown field strength on pulse duration,” Appl. Phys. Lett. 22, 635–637 (1973).
[CrossRef]

D. W. Fradin, E. Yablonovitch, and M. Bass, “Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 μm,” Appl. Opt. 12, 700–709 (1973).
[CrossRef] [PubMed]

Fuchs, B. A.

Génin, F. Y.

Glebov, L. B.

L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009).
[CrossRef]

Glezer, E. N.

C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
[CrossRef]

Gnoli, A.

Grindin, V. A.

V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975).
[CrossRef]

Hagan, D. J.

Hed, P. P.

Hernández, F. E.

Hor, T. S. A.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

Ji, W.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

Jones, S. C.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Kelly, P.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Kozlowski, M. R.

Letellier, J. P.

D. W. Fradin, N. Bloembergen, and J. P. Letellier, “Dependence of laser-induced breakdown field strength on pulse duration,” Appl. Phys. Lett. 22, 635–637 (1973).
[CrossRef]

Lowderemilk, W. H.

W. H. Lowderemilk and D. Milan, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. 17, 1888–1903(1981).
[CrossRef]

Lumea, L.

L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009).
[CrossRef]

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
[CrossRef]

Milan, D.

W. H. Lowderemilk and D. Milan, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. 17, 1888–1903(1981).
[CrossRef]

Mohebi, M.

Natoli, J.-Y.

B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

Nishimura, N.

C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
[CrossRef]

Olivares, J.

Pestmal, S. L.

V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975).
[CrossRef]

Petit, S.

Petrovskii, A. N.

V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975).
[CrossRef]

Radousky, H. B.

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

Razzari, L.

Repeev, Y. A.

Y. A. Repeev, “Two-photon absorption in fused quartz and in water at the wavelength of 212.8 nm,” Quantum Electron. 24, 897–899 (1994).
[CrossRef]

Requejo-Isidro, J.

Righini, M.

Rubenchik, A. M.

Said, A. A.

A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34, 3374–3376(1995).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Salleo, A.

Salvetti, G.

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M.G.Kuzyk and C.W.Dirk, eds. (Marcel Dekker, 1998), pp. 655–692.

Shen, X.-A.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Shensky, W.

Siiman, L. A.

L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009).
[CrossRef]

Soileau, M. J.

Solis, J.

Staggs, M.

Starke, A.

A. Starke and A. Bernhardt, “Laser damage threshold measurement according to ISO 11254: experimental realization at 1064 nm,” Proc. SPIE 2114, 212–219 (1994).
[CrossRef]

Steele, W. A.

T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010).
[CrossRef]

Suarez-Garcia, A.

Sun, X.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

Suratwala, T. I.

T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010).
[CrossRef]

Tai-Huei, W.

M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Tesar, A. A.

Van Stryland, E. W.

F. E. Hernández, W. Shensky III, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, “Viscosity dependence of optical limiting in carbon black suspensions,” Appl. Opt. 41, 1103–1107 (2002).
[CrossRef] [PubMed]

A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34, 3374–3376(1995).
[CrossRef] [PubMed]

M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M.G.Kuzyk and C.W.Dirk, eds. (Marcel Dekker, 1998), pp. 655–692.

Vincent, D.

Walser, A. D.

A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
[CrossRef]

Xia, T.

Xu, G. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

Yablonovitch, E.

D. W. Fradin, E. Yablonovitch, and M. Bass, “Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 μm,” Appl. Opt. 12, 700–709 (1973).
[CrossRef] [PubMed]

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
[CrossRef]

Yoshiyama, J.

Yu, R. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

Appl. Opt.

N. L. Boling, M. D. Crisp, and G. Dube, “Laser-induced surface damage,” Appl. Opt. 12, 650–660 (1973).
[CrossRef] [PubMed]

D. W. Fradin, E. Yablonovitch, and M. Bass, “Confirmation of an electron avalanche causing laser-induced bulk damage at 1.06 μm,” Appl. Opt. 12, 700–709 (1973).
[CrossRef] [PubMed]

A. A. Said, T. Xia, A. Dogariu, D. J. Hagan, M. J. Soileau, E. W. Van Stryland, and M. Mohebi, “Measurement of the optical damage threshold in fused quartz,” Appl. Opt. 34, 3374–3376(1995).
[CrossRef] [PubMed]

F. Y. Génin, M. D. Feit, M. R. Kozlowski, A. M. Rubenchik, A. Salleo, and J. Yoshiyama, “Rear-surface laser damage on 355 nm silica optics owing to Fresnel diffraction on front-surface contamination particles,” Appl. Opt. 39, 3654–3663 (2000).
[CrossRef]

F. E. Hernández, W. Shensky III, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, “Viscosity dependence of optical limiting in carbon black suspensions,” Appl. Opt. 41, 1103–1107 (2002).
[CrossRef] [PubMed]

D. Vincent, S. Petit, and S. L. Chin, “Optical limiting studies in carbon-black suspension for subnanosecond and subpicosecond laser pulses,” Appl. Opt. 41, 2944–2946 (2002).
[CrossRef] [PubMed]

S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002).
[CrossRef] [PubMed]

A. A. Tesar, B. A. Fuchs, and P. P. Hed, “Examination of the polished surface character of fused silica,” Appl. Opt. 31, 7164–7172 (1992).
[CrossRef] [PubMed]

Appl. Phys. B

L. A. Siiman, L. Lumea, and L. B. Glebov, “Nonlinear photoionization and laser-induced damage in silicate glasses by infrared ultrashort laser pulses,” Appl. Phys. B 96, 127–134 (2009).
[CrossRef]

M. Falconieri and G. Salvetti, “Simultaneous measurement of pure-optical and thermo-optical nonlinearities induced by high-repetition-rate, femtosecond laser pulses: application to CS2,” Appl. Phys. B 69, 133–136 (1999).
[CrossRef]

Appl. Phys. Lett.

D. W. Fradin, N. Bloembergen, and J. P. Letellier, “Dependence of laser-induced breakdown field strength on pulse duration,” Appl. Phys. Lett. 22, 635–637 (1973).
[CrossRef]

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, “Broadband optical limiting with multiwalled carbon nanotubes,” Appl. Phys. Lett. 73, 3632–3635 (1998).
[CrossRef]

E. Yablonovitch, “Optical dielectric strength of alkali-halide crystals obtained by laser-induced breakdown,” Appl. Phys. Lett. 19, 495–497 (1971).
[CrossRef]

IEEE J. Quantum Electron.

N. Bloembergen, “Laser-induced electric breakdown in solids,” IEEE J. Quantum Electron. 10, 375–386 (1974).
[CrossRef]

W. H. Lowderemilk and D. Milan, “Laser-induced surface and coating damage,” IEEE J. Quantum Electron. 17, 1888–1903(1981).
[CrossRef]

M. Sheik-Bahae, A. A. Said, W. Tai-Huei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

J. Am. Ceram. Soc.

T. I. Suratwala, M. D. Feit, and W. A. Steele, “Toward deterministic material removal and surface figure during fused silica pad polishing,” J. Am. Ceram. Soc. 93, 1326–1340 (2010).
[CrossRef]

J. Opt. Soc. Am. B

Meas. Sci. Technol.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001).
[CrossRef]

Opt. Commun.

B. Bertussi, J.-Y. Natoli, and M. Commandre, “Effect of polishing process on silica surface laser-induced damage threshold at 355 nm,” Opt. Commun. 242, 227–231 (2004).
[CrossRef]

A. D. Walser, S. G. Demos, M. Etienne, and R. Dorsinville, “Nonlinear optical absorption in laser modified regions of fused silica,” Opt. Commun. 240, 417–421 (2004).
[CrossRef]

Opt. Eng.

S. C. Jones, P. Braunlich, R. T. Casper, X.-A. Shen, and P. Kelly, “Recent progress on laser-induced modifications and intrinsic bulk damage of wide-gap optical materials,” Opt. Eng. 28, 1039–1068 (1989).

Opt. Express

Phys. Rev. Lett.

C. W. Carr, H. B. Radousky, and S. G. Demos, “Wavelength dependence of laser-induced damage: determining the damage initiation mechanisms,” Phys. Rev. Lett. 91, 127402 (2003).
[CrossRef] [PubMed]

C. W. Carr, H. B. Radousky, A. M. Rubenchik, M. D. Feit, and S. G. Demos, “Localized dynamics during laser-induced damage in optical materials,” Phys. Rev. Lett. 92, 087401 (2004).
[CrossRef] [PubMed]

Proc. SPIE

C. B. Schaffer, E. N. Glezer, N. Nishimura, and E. Mazur, “Ultrafast laser induced microexplosions: explosive dynamics and sub-micrometer structures,” Proc. SPIE 3269, 36–45 (1998).
[CrossRef]

A. Starke and A. Bernhardt, “Laser damage threshold measurement according to ISO 11254: experimental realization at 1064 nm,” Proc. SPIE 2114, 212–219 (1994).
[CrossRef]

Quantum Electron.

Y. A. Repeev, “Two-photon absorption in fused quartz and in water at the wavelength of 212.8 nm,” Quantum Electron. 24, 897–899 (1994).
[CrossRef]

Sov. J. Quantum Electron.

V. A. Grindin, A. N. Petrovskii, and S. L. Pestmal, “Characteristics of the damage of transparent solids,” Sov. J. Quantum Electron. 4, 1270–1271 (1975).
[CrossRef]

Other

E. W. Van Stryland and M. Sheik-Bahae, “Z-scan measurements of optical nonlinearities,” in Characterization Techniques and Tabulations for Organic Nonlinear Optical Materials, M.G.Kuzyk and C.W.Dirk, eds. (Marcel Dekker, 1998), pp. 655–692.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Measured calibration CS 2 Z-scan result for a 3 mm spectroscopic-grade fused-quartz cell using 10 ps , 1064 nm , and 76 MHz repetition-rate pulses: (a) is the standard CS 2 calibration result for which n 2 = ( 2.9 ± 0.2 ) × 10 14 cm 2 W 1 and (b) is the result obtained using CS 2 contained in an LID cell; n 2 was calculated to be 1.1 × 10 12 cm 2 W 1 . The literature value of n 2 for CS 2 is ( 3.1 ± 0.2 ) × 10 14 cm 2 W 1 . The measurements in (b) were conducted under the same experimental conditions as in (a).

Fig. 2
Fig. 2

Nomarski microscope images of damage morphologies of a 3 mm fused-quartz cell produced by 10 ps , 1064 nm pulses at 76 MHz repetition rate. (b) Largely represents scratches left on the surface of the cells during the polishing process, while (a), (c), and (d) show the resulting microexplosions. The maximum average power used in irradiating the cells is ~ 3.6 W , which corresponds to I o 230 MW cm 2 for a beam spot size of about 34 μm .

Fig. 3
Fig. 3

Closed-aperture Z-scan data for CS 2 contained in a new 3 mm fused-quartz cell measured at a reduced pulse-picked repetition rate of 76 kHz using 10 ps laser pulses at λ = 1064 nm . The n 2 of the CS 2 was measured to be ( 3.3 ± 0.2 ) × 10 14 cm 2 W 1 . The accepted value is ( 3.1 ± 0.2 ) × 10 14 cm 2 W 1 .

Fig. 4
Fig. 4

Z-scan profiles of an optically damaged 3 mm fused-quartz cell containing CS 2 measured at three different average powers ( P avg ) using 76 MHz , 10 ps laser pulses at λ = 1064 nm .

Fig. 5
Fig. 5

Open-aperture Z-scan data of empty LID fused-quartz spectroscopic-grade cell at (a) low input power, P avg 1.87 W (b) high input power, P avg 3.74 W , using 10 ps , 76 MHz , and 1064 nm laser pulses. The nonlinear absorption coefficient (β) for the data shown in (b) was measured to be ( 6.9 ± 0.2 ) × 10 8 cm W 1 .

Fig. 6
Fig. 6

Measured n 2 of CS 2 at different low intensities; λ = 800 nm , τ p = 130 fs , 1 / τ r = 76 MHz . Also shown is a value for n 2 at a higher intensity ( ~ 14.2 GW cm 2 ) for which LID was observed. The accepted n 2 for CS 2 is ( 3.1 ± 0.2 ) × 10 14 cm 2 W 1 .

Fig. 7
Fig. 7

Z-scan data and theoretical fits of a 2 mm CS 2 cell using 130 fs pulses at λ = 800 nm and 76 MHz (a) the standard CS 2 calibration result using ~ 40 mW ( I o 2.8 GW cm 2 ); n 2 was measured to be ( 3.3 ± 0.2 ) × 10 14 cm 2 W 1 (b) high-power ( ~ 200 mW ), I o 14.2 GW cm 2 , data and fit indicating an onset of LID. The n 2 of the damaged cell and its content is ~ 3.4 × 10 14 cm 2 W 1 .

Metrics