Abstract

We present a theoretical framework for the generation and scattering of second-harmonic and sum-frequency light from the surface of particles of arbitrary shape in the limit of low index of refraction contrast. For homogeneous and isotropic surfaces, light scattering can be described by a finite set of scattering functions. Selection rules regarding these scattering functions are presented. We also find that the scattering functions associated with achiral and chiral surfaces are directly related to the bulk and surface linear optical form factors, respectively. Finally, we derive explicit expressions for particles of ellipsoidal shape, for which we calculate angular scattering patterns as a function of particle orientation and for ensembles of particles.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
    [CrossRef]
  2. E. C. Y. Yan and K. B. Eisenthal, “Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation,” J. Phys. Chem. B 103, 6056–6060 (1999).
    [CrossRef]
  3. E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000).
    [CrossRef]
  4. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
    [CrossRef]
  5. Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
    [CrossRef]
  6. S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
    [CrossRef]
  7. K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev. 106, 1462–1477(2006).
    [CrossRef]
  8. L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007).
    [CrossRef]
  9. S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009).
    [CrossRef]
  10. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998).
    [CrossRef]
  11. E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
    [CrossRef]
  12. H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: Poly-L-lysine on polystyrene sulfate microspheres,” Langmuir 20, 9202–9209(2004).
    [CrossRef]
  13. S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
    [CrossRef]
  14. S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
    [CrossRef]
  15. J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
    [CrossRef]
  16. S. H. Jen and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003(2006).
    [CrossRef]
  17. H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
    [CrossRef]
  18. S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009).
    [CrossRef]
  19. S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010).
    [CrossRef]
  20. S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
    [CrossRef]
  21. B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
    [CrossRef]
  22. E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001).
    [CrossRef]
  23. M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
    [CrossRef]
  24. Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
    [CrossRef]
  25. W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
    [CrossRef]
  26. P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
    [CrossRef]
  27. A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
    [CrossRef]
  28. G. S. Agarwal and S. S. Jha, “Theory of 2nd harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982).
    [CrossRef]
  29. J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996).
  30. J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997).
    [CrossRef]
  31. J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
    [CrossRef]
  32. V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
    [CrossRef]
  33. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004).
    [CrossRef]
  34. S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004).
    [CrossRef]
  35. Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004).
    [CrossRef]
  36. A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007).
    [CrossRef]
  37. J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008).
    [CrossRef]
  38. A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009).
    [CrossRef]
  39. A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments: angular distribution and polarization dependence,” J. Chem. Phys. 132, 234702 (2010).
    [CrossRef]
  40. R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420(2004).
    [CrossRef]
  41. U. Seifert, “Configurations of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997).
    [CrossRef]
  42. M. G. Rossmann and J. E. Johnson, “Icosahedral RNA virus structure,” Ann. Rev. Biochem. 58, 533–573 (1989).
    [CrossRef]
  43. A. Klug, “The tobacco mosaic virus particle: structure and assembly,” Philos. Trans. R. Soc. Lond. Ser. B 354, 531–535(1999).
    [CrossRef]
  44. R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
    [CrossRef]
  45. B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
    [CrossRef]
  46. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
    [CrossRef]
  47. C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
    [CrossRef]
  48. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008).
    [CrossRef]
  49. J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009).
    [CrossRef]
  50. I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).
  51. M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
    [CrossRef]
  52. H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
    [CrossRef]
  53. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Wiley, 1969).
  54. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  55. H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
    [CrossRef]
  56. A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010).
    [CrossRef]
  57. G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121, 2635–2636 (1999).
    [CrossRef]
  58. S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
    [CrossRef]
  59. P. J. Wyatt, “Differential light scattering—a physical method for identifying living bacterial cells,” Appl. Opt. 7, 1879–1896(1968).
    [CrossRef]
  60. C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
    [CrossRef]
  61. L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
    [CrossRef]
  62. Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
    [CrossRef]
  63. V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997).
    [CrossRef]
  64. M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999).
  65. J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999).
    [CrossRef]
  66. K. Cimatu and S. Baldelli, “Sum frequency generation imaging microscopy of CO on platinum,” J. Am. Chem. Soc. 128, 16016–16017 (2006).
    [CrossRef]
  67. T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003).
    [CrossRef]

2011

M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
[CrossRef]

2010

S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010).
[CrossRef]

S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
[CrossRef]

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
[CrossRef]

A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments: angular distribution and polarization dependence,” J. Chem. Phys. 132, 234702 (2010).
[CrossRef]

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010).
[CrossRef]

2009

J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009).
[CrossRef]

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009).
[CrossRef]

S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009).
[CrossRef]

S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009).
[CrossRef]

A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
[CrossRef]

2008

2007

A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007).
[CrossRef]

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007).
[CrossRef]

2006

K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev. 106, 1462–1477(2006).
[CrossRef]

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

S. H. Jen and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003(2006).
[CrossRef]

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

K. Cimatu and S. Baldelli, “Sum frequency generation imaging microscopy of CO on platinum,” J. Am. Chem. Soc. 128, 16016–16017 (2006).
[CrossRef]

2005

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
[CrossRef]

R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
[CrossRef]

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

2004

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004).
[CrossRef]

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004).
[CrossRef]

H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: Poly-L-lysine on polystyrene sulfate microspheres,” Langmuir 20, 9202–9209(2004).
[CrossRef]

R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420(2004).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004).
[CrossRef]

2003

T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003).
[CrossRef]

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
[CrossRef]

2002

Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
[CrossRef]

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[CrossRef]

H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
[CrossRef]

2001

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef]

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001).
[CrossRef]

2000

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

1999

A. Klug, “The tobacco mosaic virus particle: structure and assembly,” Philos. Trans. R. Soc. Lond. Ser. B 354, 531–535(1999).
[CrossRef]

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121, 2635–2636 (1999).
[CrossRef]

M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999).

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999).
[CrossRef]

E. C. Y. Yan and K. B. Eisenthal, “Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation,” J. Phys. Chem. B 103, 6056–6060 (1999).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

1998

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998).
[CrossRef]

1997

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997).
[CrossRef]

V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997).
[CrossRef]

U. Seifert, “Configurations of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997).
[CrossRef]

1996

J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996).

H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
[CrossRef]

1995

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

1992

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

1989

M. G. Rossmann and J. E. Johnson, “Icosahedral RNA virus structure,” Ann. Rev. Biochem. 58, 533–573 (1989).
[CrossRef]

1982

G. S. Agarwal and S. S. Jha, “Theory of 2nd harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982).
[CrossRef]

1968

Agarwal, G. S.

G. S. Agarwal and S. S. Jha, “Theory of 2nd harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982).
[CrossRef]

Angerer, W. E.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef]

Bachelier, G.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008).
[CrossRef]

Bai, B. F.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Baldelli, S.

K. Cimatu and S. Baldelli, “Sum frequency generation imaging microscopy of CO on platinum,” J. Am. Chem. Soc. 128, 16016–16017 (2006).
[CrossRef]

Baumgart, T.

T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003).
[CrossRef]

Benichou, E.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

Bennemann, K. H.

J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996).

Berg, O.

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

Bernal, R.

R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420(2004).
[CrossRef]

Biagioni, P.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
[CrossRef]

Bonn, M.

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004).
[CrossRef]

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

Borguet, E.

H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
[CrossRef]

Brevet, P. F.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

Brillert, C.

M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999).

Brudny, V. L.

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

Buitenhuis, J.

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

Burda, C.

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef]

Campen, R. K.

A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010).
[CrossRef]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Carbone, L.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Carlino, E.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Celebrano, M.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
[CrossRef]

Chen, X. B.

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef]

Cimatu, K.

K. Cimatu and S. Baldelli, “Sum frequency generation imaging microscopy of CO on platinum,” J. Am. Chem. Soc. 128, 16016–16017 (2006).
[CrossRef]

Cingolani, R.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Corbalan, R.

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997).
[CrossRef]

Dadap, J. I.

J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009).
[CrossRef]

J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008).
[CrossRef]

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004).
[CrossRef]

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Dai, H. L.

S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010).
[CrossRef]

S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009).
[CrossRef]

S. H. Jen and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003(2006).
[CrossRef]

H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: Poly-L-lysine on polystyrene sulfate microspheres,” Langmuir 20, 9202–9209(2004).
[CrossRef]

de Aguiar, H. B.

M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
[CrossRef]

H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
[CrossRef]

J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009).
[CrossRef]

A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
[CrossRef]

de Beer, A. G. F.

M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
[CrossRef]

A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010).
[CrossRef]

H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
[CrossRef]

A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments: angular distribution and polarization dependence,” J. Chem. Phys. 132, 234702 (2010).
[CrossRef]

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009).
[CrossRef]

A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
[CrossRef]

A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007).
[CrossRef]

Del Fatti, N.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

Dewitz, J. P.

J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996).

Downer, M. C.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
[CrossRef]

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

Duboisset, J.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

Duo, L.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
[CrossRef]

Eckenrode, H. M.

H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: Poly-L-lysine on polystyrene sulfate microspheres,” Langmuir 20, 9202–9209(2004).
[CrossRef]

Eisenthal, K. B.

K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev. 106, 1462–1477(2006).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001).
[CrossRef]

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

E. C. Y. Yan and K. B. Eisenthal, “Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation,” J. Phys. Chem. B 103, 6056–6060 (1999).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998).
[CrossRef]

H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
[CrossRef]

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

El-Sayed, M. A.

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef]

Figliozzi, P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Finazzi, M.

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
[CrossRef]

Florsheimer, M.

M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999).

Fuchs, H.

M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999).

Gan, W.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

Giannini, C.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Gonella, G.

S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010).
[CrossRef]

S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009).
[CrossRef]

Hansson, T.

S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
[CrossRef]

Hao, E. C.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[CrossRef]

Heinz, T. F.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004).
[CrossRef]

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Held, H.

H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
[CrossRef]

Hess, S. T.

T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003).
[CrossRef]

Hubner, W.

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004).
[CrossRef]

J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996).

Hupp, J. T.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[CrossRef]

Husu, H.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Jen, S. H.

S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010).
[CrossRef]

S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009).
[CrossRef]

S. H. Jen and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003(2006).
[CrossRef]

Jha, S. S.

G. S. Agarwal and S. S. Jha, “Theory of 2nd harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982).
[CrossRef]

Jiang, Y.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
[CrossRef]

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

Jin, R. C.

R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
[CrossRef]

Johnson, J. E.

M. G. Rossmann and J. E. Johnson, “Icosahedral RNA virus structure,” Ann. Rev. Biochem. 58, 533–573 (1989).
[CrossRef]

Johnson, R. C.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[CrossRef]

Jonin, C.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

Jureller, J. E.

R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
[CrossRef]

Kapshai, V.

S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
[CrossRef]

Kauranen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Wiley, 1969).

Kim, H. Y.

R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
[CrossRef]

Kirilyuk, A.

V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997).
[CrossRef]

Kirilyuk, V.

V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997).
[CrossRef]

Kleyn, A. W.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

Klug, A.

A. Klug, “The tobacco mosaic virus particle: structure and assembly,” Philos. Trans. R. Soc. Lond. Ser. B 354, 531–535(1999).
[CrossRef]

Kudera, S.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Kuittinen, M.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Kurimura, S.

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Liu, Y.

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998).
[CrossRef]

Liz-Marzan, L. M.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

Lu, R.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

Lvovsky, A. I.

H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
[CrossRef]

Manna, L.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Martorell, J.

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997).
[CrossRef]

Matlis, N.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Mattern, B.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Maytorena, J. A.

R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420(2004).
[CrossRef]

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
[CrossRef]

Mendoza, B. S.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

Misewich, J. A.

Mochan, W. L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
[CrossRef]

Mochán, W. L.

V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

Nahata, A.

Nappa, J.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

Narayanan, R.

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef]

Neacsu, C. C.

C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
[CrossRef]

Nijsen, J. F. W.

A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
[CrossRef]

Ong, S. W.

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

Parak, W. J.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

Pastoriza-Santos, I.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

Pavlyukh, Y.

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004).
[CrossRef]

Peschel, U.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

Petukhov, A. V.

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004).
[CrossRef]

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

Peukert, W.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007).
[CrossRef]

Rao, Y.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

Raschke, M. B.

C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
[CrossRef]

Rasing, T.

V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997).
[CrossRef]

Reider, G. A.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
[CrossRef]

Revillod, G.

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

Roeterdink, W. G.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

Roke, S.

M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
[CrossRef]

A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010).
[CrossRef]

H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
[CrossRef]

A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments: angular distribution and polarization dependence,” J. Chem. Phys. 132, 234702 (2010).
[CrossRef]

J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009).
[CrossRef]

S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009).
[CrossRef]

A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
[CrossRef]

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009).
[CrossRef]

A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007).
[CrossRef]

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004).
[CrossRef]

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

Rossmann, M. G.

M. G. Rossmann and J. E. Johnson, “Icosahedral RNA virus structure,” Ann. Rev. Biochem. 58, 533–573 (1989).
[CrossRef]

Rowlen, K. L.

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121, 2635–2636 (1999).
[CrossRef]

Russier-Antoine, I.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960(2008).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

Sanchez-Iglesias, A.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

Sauerbeck, C.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

Schatz, G. C.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[CrossRef]

Scherer, N. F.

R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
[CrossRef]

Schmid, H. J.

L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007).
[CrossRef]

Schneider, L.

L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007).
[CrossRef]

Schürer, B.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

Seifert, U.

U. Seifert, “Configurations of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997).
[CrossRef]

Shan, J.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric material: small-particle limit,” J. Opt. Soc. Am. B 21, 1328–1347(2004).
[CrossRef]

J. I. Dadap, J. Shan, A. S. Weling, J. A. Misewich, A. Nahata, and T. F. Heinz, “Measurement of the vector character of electric fields by optical second-harmonic generation,” Opt. Lett. 24, 1059–1061 (1999).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Shen, Y. R.

H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
[CrossRef]

Simpson, G. J.

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121, 2635–2636 (1999).
[CrossRef]

Stiopkin, I.

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

Strader, M. L.

M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
[CrossRef]

H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
[CrossRef]

Sun, L.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
[CrossRef]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Uesu, Y.

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Vallee, F.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

van Blaaderen, A.

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

van der Meulen, P.

S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
[CrossRef]

van Miltenburg, J. C.

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

Viarbitskaya, S.

S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
[CrossRef]

Vilaseca, R.

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997).
[CrossRef]

Wang, H. F.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
[CrossRef]

Webb, W. W.

T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003).
[CrossRef]

Wei, X.

H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
[CrossRef]

Weling, A. S.

White, C. W.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

Wijnhoven, J. E. G. J.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

Wilson, P. T.

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

Withrow, S. P.

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

Wu, B. H.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

Wunderlich, S.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

Wyatt, P. J.

Yamamoto, Y.

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

Yan, E. C. Y.

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000).
[CrossRef]

E. C. Y. Yan and K. B. Eisenthal, “Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation,” J. Phys. Chem. B 103, 6056–6060 (1999).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998).
[CrossRef]

H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
[CrossRef]

Yang, N.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef]

Yodh, A. G.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef]

Zhao, X. L.

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

Adv. Phys.

U. Seifert, “Configurations of fluid membranes and vesicles,” Adv. Phys. 46, 13–137 (1997).
[CrossRef]

Ann. Rev. Biochem.

M. G. Rossmann and J. E. Johnson, “Icosahedral RNA virus structure,” Ann. Rev. Biochem. 58, 533–573 (1989).
[CrossRef]

Appl. Opt.

Appl. Phys. B

L. Schneider, H. J. Schmid, and W. Peukert, “Influence of particle size and concentration on the second-harmonic signal generated at colloidal surfaces,” Appl. Phys. B 87, 333–339 (2007).
[CrossRef]

Appl. Phys. Lett.

Y. Jiang, P. T. Wilson, M. C. Downer, C. W. White, and S. P. Withrow, “Second-harmonic generation from silicon nanocrystals embedded in SiO2,” Appl. Phys. Lett. 78, 766–768 (2001).
[CrossRef]

Y. Jiang, L. Sun, and M. C. Downer, “Second-harmonic spectroscopy of two-dimensional Si nanocrystal layers embedded in SiO2 films,” Appl. Phys. Lett. 81, 3034–3036 (2002).
[CrossRef]

Y. Uesu, S. Kurimura, and Y. Yamamoto, “Optical 2nd-harmonic images of 90-degrees domain-structure in BaTiO, and periodically inverted antiparallel domains in LiTaO3,” Appl. Phys. Lett. 66, 2165–2167 (1995).
[CrossRef]

V. Kirilyuk, A. Kirilyuk, and T. Rasing, “A combined nonlinear and linear magneto-optical microscopy,” Appl. Phys. Lett. 70, 2306–2308 (1997).
[CrossRef]

Biophys. J.

E. C. Y. Yan and K. B. Eisenthal, “Effect of cholesterol on molecular transport of organic cations across liposome bilayers probed by second harmonic generation,” Biophys. J. 79, 898–903 (2000).
[CrossRef]

Chem. Phys. Chem.

S. Roke, “Nonlinear optical spectroscopy of soft matter interfaces,” Chem. Phys. Chem. 10, 1380–1388 (2009).
[CrossRef]

Chem. Phys. Lett.

H. F. Wang, E. C. Y. Yan, E. Borguet, and K. B. Eisenthal, “Second harmonic generation from the surface of centrosymmetric particles in bulk solution,” Chem. Phys. Lett. 259, 15–20 (1996).
[CrossRef]

S. W. Ong, X. L. Zhao, and K. B. Eisenthal, “Polarization of water-molecules at a charged interface—2nd harmonic studies of the silica water interface,” Chem. Phys. Lett. 191, 327–335 (1992).
[CrossRef]

Chem. Rev.

C. Burda, X. B. Chen, R. Narayanan, and M. A. El-Sayed, “Chemistry and properties of nanocrystals of different shapes,” Chem. Rev. 105, 1025–1102 (2005).
[CrossRef]

K. B. Eisenthal, “Second harmonic spectroscopy of aqueous nano- and microparticle interfaces,” Chem. Rev. 106, 1462–1477(2006).
[CrossRef]

Int. Rev. Phys. Chem.

H. F. Wang, W. Gan, R. Lu, Y. Rao, and B. H. Wu, “Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS),” Int. Rev. Phys. Chem. 24, 191–256 (2005).
[CrossRef]

J. Am. Chem. Soc.

L. Carbone, S. Kudera, E. Carlino, W. J. Parak, C. Giannini, R. Cingolani, and L. Manna, “Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid,” J. Am. Chem. Soc. 128, 748–755 (2006).
[CrossRef]

G. J. Simpson and K. L. Rowlen, “An SHG magic angle: dependence of second harmonic generation orientation measurements on the width of the orientation distribution,” J. Am. Chem. Soc. 121, 2635–2636 (1999).
[CrossRef]

R. C. Jin, J. E. Jureller, H. Y. Kim, and N. F. Scherer, “Correlating second harmonic optical responses of single Ag nanoparticles with morphology,” J. Am. Chem. Soc. 127, 12482–12483(2005).
[CrossRef]

K. Cimatu and S. Baldelli, “Sum frequency generation imaging microscopy of CO on platinum,” J. Am. Chem. Soc. 128, 16016–16017 (2006).
[CrossRef]

H. B. de Aguiar, A. G. F. de Beer, M. L. Strader, and S. Roke, “The interfacial tension of nanoscopic oil droplets in water is hardly affected by SDS surfactant,” J. Am. Chem. Soc. 132, 2122–2123 (2010).
[CrossRef]

J. Chem. Phys.

E. C. Hao, G. C. Schatz, R. C. Johnson, and J. T. Hupp, “Hyper-Rayleigh scattering from silver nanoparticles,” J. Chem. Phys. 117, 5963–5966 (2002).
[CrossRef]

A. G. F. de Beer and S. Roke, “Obtaining molecular orientation from second harmonic and sum frequency scattering experiments: angular distribution and polarization dependence,” J. Chem. Phys. 132, 234702 (2010).
[CrossRef]

J. I. Dadap, H. B. de Aguiar, and S. Roke, “Nonlinear light scattering from clusters and single particles,” J. Chem. Phys. 130, 214710 (2009).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

S. H. Jen, G. Gonella, and H. L. Dai, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. I: Experimental observations,” J. Phys. Chem. A 113, 4758–4762 (2009).
[CrossRef]

J. Phys. Chem. B

E. C. Y. Yan and K. B. Eisenthal, “Probing the interface of microscopic clay particles in aqueous solution by second harmonic generation,” J. Phys. Chem. B 103, 6056–6060 (1999).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “New method for determination of surface potential of microscopic particles by second harmonic generation,” J. Phys. Chem. B 102, 6331–6336(1998).
[CrossRef]

E. C. Y. Yan, Y. Liu, and K. B. Eisenthal, “In situ studies of molecular transfer between microparticles by second-harmonic generation,” J. Phys. Chem. B 105, 8531–8537 (2001).
[CrossRef]

S. H. Jen and H. L. Dai, “Probing molecules adsorbed at the surface of nanometer colloidal particles by optical second-harmonic generation,” J. Phys. Chem. B 110, 23000–23003(2006).
[CrossRef]

J. Phys. Chem. C

S. H. Jen, H. L. Dai, and G. Gonella, “The effect of particle size in second harmonic generation from the surface of spherical colloidal particles. II: The nonlinear Rayleigh-Gans-Debye model,” J. Phys. Chem. C 114, 4302–4308 (2010).
[CrossRef]

J. Phys. Chem. Lett.

I. Russier-Antoine, J. Duboisset, G. Bachelier, E. Benichou, C. Jonin, N. Del Fatti, F. Vallee, A. Sanchez-Iglesias, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. F. Brevet, “Symmetry cancellations in the quadratic hyperpolarizability of non-centrosymmetric gold decahedra,” J. Phys. Chem. Lett. 1, 874–880 (2010).

J. Phys. Condens. Matter

S. Roke, J. Buitenhuis, J. C. van Miltenburg, M. Bonn, and A. van Blaaderen, “Interface-solvent effects during colloidal phase transitions,” J. Phys. Condens. Matter 17, S3469–S3479 (2005).
[CrossRef]

Langmuir

H. M. Eckenrode and H. L. Dai, “Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: Poly-L-lysine on polystyrene sulfate microspheres,” Langmuir 20, 9202–9209(2004).
[CrossRef]

Mater. Sci. Eng. C

M. Florsheimer, C. Brillert, and H. Fuchs, “Chemical imaging of interfaces by sum-frequency generation,” Mater. Sci. Eng. C 8–9, 335–341 (1999).

Nano Lett.

B. K. Canfield, H. Husu, J. Laukkanen, B. F. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007).
[CrossRef]

Nature

T. Baumgart, S. T. Hess, and W. W. Webb, “Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension,” Nature 425, 821–824 (2003).
[CrossRef]

Opt. Lett.

Philos. Trans. R. Soc. Lond. Ser. B

A. Klug, “The tobacco mosaic virus particle: structure and assembly,” Philos. Trans. R. Soc. Lond. Ser. B 354, 531–535(1999).
[CrossRef]

Phys. Rev. A

S. Viarbitskaya, V. Kapshai, P. van der Meulen, and T. Hansson, “Size dependence of second-harmonic generation at the surface of microspheres,” Phys. Rev. A 81, 053850 (2010).
[CrossRef]

J. Shan, J. I. Dadap, I. Stiopkin, G. A. Reider, and T. F. Heinz, “Experimental study of optical second-harmonic scattering from spherical nanoparticles,” Phys. Rev. A 73, 23819 (2006).
[CrossRef]

Phys. Rev. A.

J. Martorell, R. Vilaseca, and R. Corbalan, “Scattering of second-harmonic light from small spherical particles ordered in a crystalline lattice,” Phys. Rev. A. 55, 4520–4525 (1997).
[CrossRef]

Phys. Rev. B

R. Bernal and J. A. Maytorena, “Second harmonic generation from centrosymmetric thin films by a focused beam with arbitrary transverse structure,” Phys. Rev. B 70, 125420(2004).
[CrossRef]

V. L. Brudny, B. S. Mendoza, and W. L. Mochán, “Second-harmonic generation from spherical particles,” Phys. Rev. B 62, 11152–11162 (2000).
[CrossRef]

S. Roke, M. Bonn, and A. V. Petukhov, “Nonlinear optical scattering: the concept of effective susceptibility,” Phys. Rev. B 70, 115106 (2004).
[CrossRef]

Y. Pavlyukh and W. Hubner, “Nonlinear Mie scattering from spherical particles,” Phys. Rev. B 70, 245434 (2004).
[CrossRef]

A. G. F. de Beer and S. Roke, “Sum frequency generation scattering from the interface of an isotropic particle: geometrical and chiral effects,” Phys. Rev. B 75, 245438 (2007).
[CrossRef]

J. I. Dadap, “Optical second-harmonic scattering from cylindrical particles,” Phys. Rev. B 78, 205322 (2008).
[CrossRef]

A. G. F. de Beer and S. Roke, “Nonlinear Mie theory for second-harmonic and sum-frequency scattering,” Phys. Rev. B 79, 155420 (2009).
[CrossRef]

W. L. Mochan, J. A. Maytorena, B. S. Mendoza, and V. L. Brudny, “Second-harmonic generation in arrays of spherical particles,” Phys. Rev. B 68, 085318 (2003).
[CrossRef]

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light scattering,” Phys. Rev. B 82, 241404(2010).
[CrossRef]

A. G. F. de Beer, R. K. Campen, and S. Roke, “Separating surface structure and surface charge with second-harmonic and sum-frequency scattering,” Phys. Rev. B 82, 235431 (2010).
[CrossRef]

J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005).
[CrossRef]

C. C. Neacsu, G. A. Reider, and M. B. Raschke, “Second-harmonic generation from nanoscopic metal tips: symmetry selection rules for single asymmetric nanostructures,” Phys. Rev. B 71, 201402 (2005).
[CrossRef]

M. Finazzi, P. Biagioni, M. Celebrano, and L. Duo, “Selection rules for second-harmonic generation in nanoparticles,” Phys. Rev. B 76, 125414 (2007).
[CrossRef]

H. Held, A. I. Lvovsky, X. Wei, and Y. R. Shen, “Bulk contribution from isotropic media in surface sum-frequency generation,” Phys. Rev. B 66, 205110 (2002).
[CrossRef]

Phys. Rev. Lett.

S. Roke, W. G. Roeterdink, J. E. G. J. Wijnhoven, A. V. Petukhov, A. W. Kleyn, and M. Bonn, “Vibrational sum frequency scattering from a submicron suspension,” Phys. Rev. Lett. 91, 258302(2003).
[CrossRef]

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett. 87, 103902 (2001).
[CrossRef]

P. Figliozzi, L. Sun, Y. Jiang, N. Matlis, B. Mattern, M. C. Downer, S. P. Withrow, C. W. White, W. L. Mochan, and B. S. Mendoza, “Single-beam and enhanced two-beam second-harmonic generation from silicon nanocrystals by use of spatially inhomogeneous femtosecond pulses,” Phys. Rev. Lett. 94, 047401 (2005).
[CrossRef]

A. G. F. de Beer, H. B. de Aguiar, J. F. W. Nijsen, and S. Roke, “Detection of buried microstructures by nonlinear light scattering spectroscopy,” Phys. Rev. Lett. 102, 095502 (2009).
[CrossRef]

J. I. Dadap, J. Shan, K. B. Eisenthal, and T. F. Heinz, “Second-harmonic Rayleigh scattering from a sphere of centrosymmetric material,” Phys. Rev. Lett. 83, 4045–4048 (1999).
[CrossRef]

Proc. Natl. Acad. Sci. USA

S. Roke, O. Berg, J. Buitenhuis, A. van Blaaderen, and M. Bonn, “Surface molecular view of colloidal gelation,” Proc. Natl. Acad. Sci. USA 103, 13310–13314 (2006).
[CrossRef]

Soft Matt.

M. L. Strader, H. B. de Aguiar, A. G. F. de Beer, and S. Roke, “Label-free spectroscopic detection of vesicles in water using vibrational sum frequency scattering,” Soft Matt. 7, 4959–4963(2011).
[CrossRef]

Solid State Commun.

G. S. Agarwal and S. S. Jha, “Theory of 2nd harmonic-generation at a metal-surface with surface-plasmon excitation,” Solid State Commun. 41, 499–501 (1982).
[CrossRef]

Zeit. Phys. D

J. P. Dewitz, W. Hubner, and K. H. Bennemann, “Theory for nonlinear Mie-scattering from spherical metal clusters,” Zeit. Phys. D 37, 75–84 (1996).

Other

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Wiley, 1969).

H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics