Abstract

Diode alkali vapor lasers (DPALs) with a flowing medium provide a pathway to extremely high-power CW or quasi-CW laser operations. In this article, the model for end-pumped alkali lasers [Beach et al., J. Opt. Soc. Am. B 21, 2151(2004)] is expanded to model DPALs in a side-pumped configuration. The difference between our model and the published model [Komashko et al., Proc. SPIE 7581, 75810H-1 (2010)] is studied, and a comparison with other people’s experimental results [Zweiback et al., Proc. SPIE 7915, 791509-1 (2011)] is made, which demonstrates the validity of our model. Some important influencing factors are simulated and analyzed. A conceptual power-scaled design of a megawatt-class side-pumped flowing DPAL is made. The results demonstrate an optical-to-optical efficiency over 60% with all the other parameters reasonable and available in the near future.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
    [CrossRef]
  2. P. Rabinowitz, S. Jacobs, and G. Gould, “Continuous optically pumped Cs laser,” Appl. Opt. 1, 513–516 (1962).
    [CrossRef]
  3. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003).
    [CrossRef] [PubMed]
  4. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
    [CrossRef]
  5. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167–2169 (2007).
    [CrossRef] [PubMed]
  6. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave rubidium vapor laser,” Opt. Express 16, 748–751 (2008).
    [CrossRef] [PubMed]
  7. B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33, 414–415 (2008).
    [CrossRef] [PubMed]
  8. B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
    [CrossRef]
  9. J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
    [CrossRef]
  10. J. Zweiback and W. F. Krupke, “28 W average power hydrocarbon-free rubidium-diode-pumped alkali laser,” Opt. Express 18, 1444–1449 (2010).
    [CrossRef] [PubMed]
  11. J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).
  12. Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
    [CrossRef]
  13. W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).
    [CrossRef]
  14. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
    [CrossRef]
  15. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
    [CrossRef]
  16. A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side-pumped alkali laser,” Proc. SPIE 7581, 75810H-1–75810H-9 (2010).
  17. J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor laser,” Proc. SPIE 7915, 791509-1–791509-7 (2011).
  18. A. E. Siegman, “Electric dipole transitions in real atoms,” in Lasers (University Science Books, 1986), pp. 150–153
  19. D. A. Steck, “Rubidium 87 D line data,” available online at http://steck.us/alkalidata.
  20. E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
    [CrossRef]
  21. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (5S21/2→5P21/2, 5P23/2) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
    [CrossRef]
  22. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
    [CrossRef]
  23. D. A. Steck, “Rubidium 85 D line data,” available online at http://steck.us/alkalidata.
  24. J. Zweiback and B. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525-1–700525-8 (2008).
    [CrossRef]
  25. Available online at http://www.lasertel.com/Products/CWArray.aspx.

2011 (1)

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor laser,” Proc. SPIE 7915, 791509-1–791509-7 (2011).

2010 (5)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side-pumped alkali laser,” Proc. SPIE 7581, 75810H-1–75810H-9 (2010).

J. Zweiback and W. F. Krupke, “28 W average power hydrocarbon-free rubidium-diode-pumped alkali laser,” Opt. Express 18, 1444–1449 (2010).
[CrossRef] [PubMed]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

2009 (3)

J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

2008 (4)

J. Zweiback and B. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525-1–700525-8 (2008).
[CrossRef]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Laser diode array pumped continuous wave rubidium vapor laser,” Opt. Express 16, 748–751 (2008).
[CrossRef] [PubMed]

B. V. Zhdanov, A. Stooke, G. Boyadjian, A. Voci, and R. J. Knize, “Rubidium vapor laser pumped by two laser diode arrays,” Opt. Lett. 33, 414–415 (2008).
[CrossRef] [PubMed]

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

2007 (1)

2004 (2)

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).
[CrossRef]

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
[CrossRef]

2003 (1)

1997 (1)

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (5S21/2→5P21/2, 5P23/2) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

1970 (1)

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

1962 (1)

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Beach, R. J.

Boyadjian, G.

Dubinskii, M. A.

Early, J. T.

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).
[CrossRef]

Gould, G.

Hager, G.

J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

Hager, G. D.

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Hiruma, T.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

Hostutler, D. A.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Hrycyshyn, E. S.

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

Jacobs, S.

Kan, H.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

Kanz, V. K.

Knize, R. J.

Komashko, A.

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor laser,” Proc. SPIE 7915, 791509-1–791509-7 (2011).

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).

Komashko, A. M.

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side-pumped alkali laser,” Proc. SPIE 7581, 75810H-1–75810H-9 (2010).

Krause, L.

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

Krupke, B.

J. Zweiback and B. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525-1–700525-8 (2008).
[CrossRef]

Krupke, W. F.

J. Zweiback and W. F. Krupke, “28 W average power hydrocarbon-free rubidium-diode-pumped alkali laser,” Opt. Express 18, 1444–1449 (2010).
[CrossRef] [PubMed]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).

J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).
[CrossRef]

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous wave alkali vapor lasers: experiment, model, and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003).
[CrossRef] [PubMed]

Merkle, L. D.

Miyajima, H.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

Niigaki, M.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

Payne, S. A.

Perram, G. P.

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (5S21/2→5P21/2, 5P23/2) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

Rabinowitz, P.

Rotondaro, M. D.

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (5S21/2→5P21/2, 5P23/2) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

Rudolph, W.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Sell, J.

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

Siegman, A. E.

A. E. Siegman, “Electric dipole transitions in real atoms,” in Lasers (University Science Books, 1986), pp. 150–153

Steck, D. A.

D. A. Steck, “Rubidium 87 D line data,” available online at http://steck.us/alkalidata.

D. A. Steck, “Rubidium 85 D line data,” available online at http://steck.us/alkalidata.

Stooke, A.

Sulham, C. V.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Voci, A.

Wilkinson, M. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

Zameroski, N. D.

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Zhdanov, B.

Zhdanov, B. V.

Zheng, Y.

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

Zweiback, J.

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor laser,” Proc. SPIE 7915, 791509-1–791509-7 (2011).

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side-pumped alkali laser,” Proc. SPIE 7581, 75810H-1–75810H-9 (2010).

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).

J. Zweiback and W. F. Krupke, “28 W average power hydrocarbon-free rubidium-diode-pumped alkali laser,” Opt. Express 18, 1444–1449 (2010).
[CrossRef] [PubMed]

J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

J. Zweiback and B. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525-1–700525-8 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

Appl. Phys. Expr. (1)

Y. Zheng, M. Niigaki, H. Miyajima, T. Hiruma, and H. Kan, “High-efficiency 894 nm laser emission of laser-diode-bar-pumped cesium-vapor laser,” Appl. Phys. Expr. 2, 032501 (2009).
[CrossRef]

Can. J. Phys. (1)

E. S. Hrycyshyn and L. Krause, “Inelastic collisions between excited alkali atoms and molecules. VII. Sensitized fluorescence and quenching in mixtures of rubidium with H2, HD, D2, N2, CH4, CD4, C2H4, and C2H6,” Can. J. Phys. 48, 2761–2768 (1970).
[CrossRef]

Electron. Lett. (1)

B. V. Zhdanov, J. Sell, and R. J. Knize, “Multiple laser diode array pumped Cs laser with 48 W output power,” Electron. Lett. 44, 582–583 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb(5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the rubidium D1 and D2 lines (5S21/2→5P21/2, 5P23/2) by rare gases, H2, D2, N2, CH4 and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

Opt. Commun. (2)

J. Zweiback, G. Hager, and W. F. Krupke, “High-efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112, 1940–1949 (1958).
[CrossRef]

Proc. SPIE (5)

J. Zweiback and B. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525-1–700525-8 (2008).
[CrossRef]

J. Zweiback, A. Komashko, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G-1–75810G-5 (2010).

W. F. Krupke, R. J. Beach, V. K. Kanz, S. A. Payne, and J. T. Early, “New class of cw high-power diode-pumped alkali lasers (DPALs),” Proc. SPIE 5448, 7–17 (2004).
[CrossRef]

A. M. Komashko and J. Zweiback, “Modeling laser performance of scalable side-pumped alkali laser,” Proc. SPIE 7581, 75810H-1–75810H-9 (2010).

J. Zweiback and A. Komashko, “High-energy transversely pumped alkali vapor laser,” Proc. SPIE 7915, 791509-1–791509-7 (2011).

Other (4)

A. E. Siegman, “Electric dipole transitions in real atoms,” in Lasers (University Science Books, 1986), pp. 150–153

D. A. Steck, “Rubidium 87 D line data,” available online at http://steck.us/alkalidata.

Available online at http://www.lasertel.com/Products/CWArray.aspx.

D. A. Steck, “Rubidium 85 D line data,” available online at http://steck.us/alkalidata.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of DPAL in single-side double-pass pump configuration.

Fig. 2
Fig. 2

Schematic diagram of intracavity laser and pump powers in a volume segment.

Fig. 3
Fig. 3

Process of iterative algorithm for single-side double-pass pump configuration.

Fig. 4
Fig. 4

Evolution of spectrally resolved pump intensities (cell dimension 0.1 × 5 × 8 cm ).

Fig. 5
Fig. 5

Result of some intracavity information (cell dimensions 0.1 × 5 × 8 cm ). In (c), each step corresponds to the power in one volume segment.

Fig. 6
Fig. 6

Influence of division numbers on calculated results (cell dimensions 0.1 × 5 × 8 cm ).

Fig. 7
Fig. 7

Calculated result for output energy as a function of input energy [ P methane = 2.7 atm ( 20 ° C )].

Fig. 8
Fig. 8

Calculated result for output energy as a function of methane pressure ( E p = 49 mJ ).

Fig. 9
Fig. 9

Temperature influence on laser characteristics.

Fig. 10
Fig. 10

Pump intensity influence on laser characteristics at optimal operating temperature.

Fig. 11
Fig. 11

Cell width influence on laser characteristics at optimal operating temperature.

Fig. 12
Fig. 12

Helium pressure influence on laser characteristics at optimal operating temperature ( Δ v p = 0.1 nm ).

Fig. 13
Fig. 13

Helium pressure influence on η opt-opt for different pump linewidths at optimal operating temperature.

Fig. 14
Fig. 14

Temperature increase along the width of flowing gain medium.

Tables (2)

Tables Icon

Table 1 Comparison with Calculated Results Quoted from Published Literature [16]

Tables Icon

Table 2 Power-Scaled Parameters for a 1 MW Side-Pumped DPAL with a Flowing Gain Medium

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

d n 1 ( y ) d t = Γ p ( y ) + Γ l ( y ) + n 2 ( y ) τ D 1 + n 3 ( y ) τ D 2 ,
d n 2 ( y ) d t = Γ l ( y ) + γ 32 [ n 3 ( y ) 2 n 2 ( y ) exp ( Δ E k T ) ] n 2 ( y ) τ D 1 ,
d n 3 ( y ) d t = Γ p ( y ) γ 32 [ n 3 ( y ) 2 n 2 ( y ) exp ( Δ E k T ) ] n 3 ( y ) τ D 2 ,
P p ± ( y , λ ) = d P p ± ( y ) d λ = P p ± ( y ) · 4 ln 2 π c Δ ν p λ 2 exp [ 4 ln 2 c Δ ν p ( 1 λ 1 λ p ) ] 2 ,
Γ p ( y ) = 1 h ν p V p [ P p + ( y ) P p + ( y + Δ y ) + P p ( y + Δ y ) P p ( y ) ] = 1 h ν p V p 0 P p + ( y , λ ) × { 1 exp [ ( n 1 ( y ) 1 2 n 3 ( y ) ) σ 13 ( λ ) Δ y ] } d λ + 1 h ν p V p 0 P p ( y , λ ) × { exp [ ( n 1 ( y ) 1 2 n 3 ( y ) ) σ 13 ( λ ) Δ y ] 1 } d λ ,
σ 13 ( λ ) = g 3 g 1 3 * 4 π 2 A 31 λ D 2 2 Δ ν D 2 1 1 + [ 2 Δ ν D 2 ( c λ c λ D 2 ) ] 2 ,
Γ l ( y ) = P 2 ( y ) P 1 ( y ) + P 4 ( y ) P 3 ( y ) h ν l V l = P laser ( y ) h ν l V p η mod e R oc T w 1 R o c { exp [ ( n 2 ( y ) n 1 ( y ) ) σ 21 L ] 1 } × { 1 + T w 2 T s 2 R back exp [ ( n 2 ( y ) n 1 ( y ) ) σ 21 L ] } ,
σ 21 = 3 * 4 π 2 A 21 λ D 1 2 Δ ν D 1 ,
P fluorescence ( y ) = V l [ n 2 ( y ) A 21 E 21 + n 3 ( y ) A 31 E 31 ] ,
P thermal ( y ) = V l γ 32 Δ E [ n 3 ( y ) 2 n 2 ( y ) exp ( Δ E k T ) ] ,
P scatter ( y ) = P 1 ( y ) T w ( 1 T w ) + P 2 ( y ) ( 1 T w ) + P 2 ( y ) T w ( 1 T s ) + P 2 ( y ) T w T s ( 1 R back ) + P 2 ( y ) T w T s R back ( 1 T s ) + P 3 ( y ) T w ( 1 T w ) + P 4 ( y ) ( 1 T w ) ,
P absorb ( y ) = P laser ( y ) + P fluorescence ( y ) + P thermal ( y ) + P scatter ( y ) .
P p + ( y + Δ y , λ ) = P p + ( y , λ ) exp [ ( n 1 ( y ) 1 2 n 3 ( y ) ) σ 13 ( λ ) Δ y ] .
P p ( y , λ ) = P p ( y + Δ y , λ ) exp [ ( n 1 ( y ) 1 2 n 3 ( y ) ) σ 13 ( λ ) Δ y ] .
P p ( y + Δ y ) = P p ( y ) exp [ ( n 1 ( y ) 1 2 n 3 ( y ) ) σ 13 ( λ ) Δ y ] .
V laser = max [ P laser ( y ) ] y [ 0 , W ] min [ P laser ( y ) ] y [ 0 , W ] max [ P laser ( y ) ] y [ 0 , W ] .
Δ ν D 2 = 1 τ D 2 + 26.2 ( MHz / torr ) T 394 ( K ) × P methane ( 20 ° C ) T 293.15 ( K ) .
log 10 P v ( torr ) = 2.881 + 4.312 4040 T .
Δ T ( y , y + Δ y ) = 0.4 η Q defect T P He v · [ I p + ( y ) I p + ( y + Δ y ) + I p ( y + Δ y ) I p ( y ) ] ,

Metrics