Abstract

We describe an indirect optical gripper for noninvasive micromanipulation of sensitive objects, such as cells. Our optical gripper, driven by dynamic holographic optical tweezers, consists of an arrangement of six silica beads, each held in place by an optical trap. The beads are moved so as to grip an object, which itself is not significantly exposed to laser light. Six beads are sufficient to grip an object reliably, consistent with robotics design rules. We find that improved gripping is achieved when beads are arranged into groups of triplets, since each triplet of trapped beads forms a weakly attractive pocket into which other objects are drawn.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
    [Crossref] [PubMed]
  3. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  4. S. Sato, Y. Harada, and Y. Waseda, “Optical trapping of microscopic metal particles,” Opt. Lett. 19, 1807–1809 (1994).
    [Crossref] [PubMed]
  5. S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
    [Crossref]
  6. J. Plewa, E. Tanner, D. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12, 1978–1981 (2004).
    [Crossref] [PubMed]
  7. A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
    [Crossref] [PubMed]
  8. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
    [Crossref]
  9. R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J. 75, 294–320 (1998).
    [Crossref] [PubMed]
  10. M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
    [Crossref] [PubMed]
  11. K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
    [Crossref] [PubMed]
  12. T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
    [Crossref] [PubMed]
  13. P. A. Janmey and C. A. McCulloch, “Cell mechanics: integrating cell responses to mechanical stimuli,” Annu. Rev. Biomed. Eng. 9, 1–34 (2007).
    [Crossref] [PubMed]
  14. D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463, 485–492 (2010).
    [Crossref] [PubMed]
  15. V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006).
    [Crossref] [PubMed]
  16. E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
    [Crossref] [PubMed]
  17. G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
    [Crossref]
  18. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
    [Crossref]
  19. J. A. Grieve, A. Ulcinas, S. Subramanian, G. M. Gibson, M. J. Padgett, D. M. Carberry, and M. J. Miles, “Hands-on with optical tweezers: a multitouch interface for holographicoptical trapping,” Opt. Express 17, 3595–3602 (2009).
    [Crossref] [PubMed]
  20. V. Emiliani, D. Cojoc, E. Ferrari, V. Garbin, C. Durieux, M. Coppey-Moisan, and E. Di Fabrizio, “Wave front engineering for microscopy of living cells,” Opt. Express 13, 1395–1405(2005).
    [Crossref] [PubMed]
  21. Y. Roichman and D. Grier, “Holographic assembly of quasicrystalline photonic heterostructures,” Opt. Express 13, 5434–5439(2005).
    [Crossref] [PubMed]
  22. C. Schmitz, J. Spatz, and J. Curtis, “High-precision steering of multiple holographic optical traps,” Opt. Express 13, 8678–8685(2005).
    [Crossref] [PubMed]
  23. H. Asada and M. Kitagawa, “Kinematic analysis and planning for form closure grasps by robotic hands,” Robotics Comput. Integrated Manufact. 5, 293–299 (1989).
    [Crossref]

2010 (3)

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

2007 (2)

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

P. A. Janmey and C. A. McCulloch, “Cell mechanics: integrating cell responses to mechanical stimuli,” Annu. Rev. Biomed. Eng. 9, 1–34 (2007).
[Crossref] [PubMed]

2006 (1)

V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006).
[Crossref] [PubMed]

2005 (3)

2004 (2)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
[Crossref]

J. Plewa, E. Tanner, D. Mueth, and D. Grier, “Processing carbon nanotubes with holographic optical tweezers,” Opt. Express 12, 1978–1981 (2004).
[Crossref] [PubMed]

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

2000 (1)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

1999 (1)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

1998 (1)

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J. 75, 294–320 (1998).
[Crossref] [PubMed]

1994 (1)

1989 (1)

H. Asada and M. Kitagawa, “Kinematic analysis and planning for form closure grasps by robotic hands,” Robotics Comput. Integrated Manufact. 5, 293–299 (1989).
[Crossref]

1973 (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aabo, T.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Arneborg, N.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Asada, H.

H. Asada and M. Kitagawa, “Kinematic analysis and planning for form closure grasps by robotic hands,” Robotics Comput. Integrated Manufact. 5, 293–299 (1989).
[Crossref]

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Barron, L.

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

Bar-Ziv, R.

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J. 75, 294–320 (1998).
[Crossref] [PubMed]

Beck, F.

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

Bergman, K.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

Blab, G. A.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

Bustamante, C.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Cai, C. W.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
[Crossref]

Carberry, D. M.

Chadd, E. H.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

Chemla, Y. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Cojoc, D.

Coppey-Moisan, M.

Curtis, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Dam, J. S.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Di Fabrizio, E.

Downing, B. P. B.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

Durieux, C.

Emiliani, V.

Enger, J.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

Ericsson, M.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

Farré, A.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

Ferrari, E.

Fletcher, D. A.

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

Forde, N. R.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

Garbin, V.

Gibson, G.

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

Gibson, G. M.

Gittes, F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Gluckstad, J.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Gordon, J. P.

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[Crossref]

Grier, D.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Grieve, J. A.

Hagberg, P.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

Hanstorp, D.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

Harada, Y.

Janmey, P. A.

P. A. Janmey and C. A. McCulloch, “Cell mechanics: integrating cell responses to mechanical stimuli,” Annu. Rev. Biomed. Eng. 9, 1–34 (2007).
[Crossref] [PubMed]

Kitagawa, M.

H. Asada and M. Kitagawa, “Kinematic analysis and planning for form closure grasps by robotic hands,” Robotics Comput. Integrated Manufact. 5, 293–299 (1989).
[Crossref]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Liou, G. F.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

Lopez, H. A.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
[Crossref]

McCulloch, C. A.

P. A. Janmey and C. A. McCulloch, “Cell mechanics: integrating cell responses to mechanical stimuli,” Annu. Rev. Biomed. Eng. 9, 1–34 (2007).
[Crossref] [PubMed]

Miles, M. J.

Moffitt, J. R.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Moses, E.

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J. 75, 294–320 (1998).
[Crossref] [PubMed]

Mueth, D.

Mullins, R. D.

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

Nelson, P.

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J. 75, 294–320 (1998).
[Crossref] [PubMed]

Neuman, K. C.

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

Nystrom, T.

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

Padgett, M.

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

Padgett, M. J.

Palima, D. Z.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Perch-Nielsen, I. R.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Peterman, E. J. G.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Plewa, J.

Roichman, Y.

Sato, S.

Schmidt, C. F.

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

Schmitz, C.

Sheetz, M.

V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006).
[Crossref] [PubMed]

Siegumfeldt, H.

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

Smith, S. B.

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Spatz, J.

Subramanian, S.

Tan, S.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
[Crossref]

Tanner, E.

Ulcinas, A.

van der Horst, A.

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

Vogel, V.

V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006).
[Crossref] [PubMed]

Waseda, Y.

Whyte, G.

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

Zhang, Y.

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
[Crossref]

Annu. Rev. Biochem. (1)

J. R. Moffitt, Y. R. Chemla, S. B. Smith, and C. Bustamante, “Recent advances in optical tweezers,” Annu. Rev. Biochem. 77, 205–228 (2008).
[Crossref] [PubMed]

Annu. Rev. Biomed. Eng. (1)

P. A. Janmey and C. A. McCulloch, “Cell mechanics: integrating cell responses to mechanical stimuli,” Annu. Rev. Biomed. Eng. 9, 1–34 (2007).
[Crossref] [PubMed]

Biophys. J. (3)

K. C. Neuman, E. H. Chadd, G. F. Liou, K. Bergman, and S. M. Block, “Characterization of photodamage to escherichia coli in optical traps,” Biophys. J. 77, 2856–2863 (1999).
[Crossref] [PubMed]

R. Bar-Ziv, E. Moses, and P. Nelson, “Dynamic excitations in membranes induced by optical tweezers,” Biophys. J. 75, 294–320 (1998).
[Crossref] [PubMed]

E. J. G. Peterman, F. Gittes, and C. F. Schmidt, “Laser-induced heating in optical traps,” Biophys. J. 84, 1308–1316 (2003).
[Crossref] [PubMed]

J. Bacteriol. (1)

M. Ericsson, D. Hanstorp, P. Hagberg, J. Enger, and T. Nystrom, “Sorting out bacterial viability with optical tweezers,” J. Bacteriol. 182, 5551–5555 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

T. Aabo, I. R. Perch-Nielsen, J. S. Dam, D. Z. Palima, H. Siegumfeldt, J. Gluckstad, and N. Arneborg, “Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae,” J. Biomed. Opt. 15, 041505(2010).
[Crossref] [PubMed]

J. Biophotonics (1)

A. Farré, A. van der Horst, G. A. Blab, B. P. B. Downing, and N. R. Forde, “Stretching single DNA molecules to demonstrate high-force capabilities of holographic optical tweezers,” J. Biophotonics 3, 224–233 (2010).
[Crossref] [PubMed]

Nano Lett. (1)

S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, “Optical trapping of single-walled carbon nanotubes,” Nano Lett. 4, 1415–1419(2004).
[Crossref]

Nat. Rev. Mol. Cell. Biol. (1)

V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nat. Rev. Mol. Cell. Biol. 7, 265–275 (2006).
[Crossref] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

D. A. Fletcher and R. D. Mullins, “Cell mechanics and the cytoskeleton,” Nature 463, 485–492 (2010).
[Crossref] [PubMed]

New J. Phys. (1)

G. Gibson, L. Barron, F. Beck, G. Whyte, and M. Padgett, “Optically controlled grippers for manipulating micron-sized particles,” New J. Phys. 9, 14 (2007).
[Crossref]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169–175 (2002).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (1)

J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Robotics Comput. Integrated Manufact. (1)

H. Asada and M. Kitagawa, “Kinematic analysis and planning for form closure grasps by robotic hands,” Robotics Comput. Integrated Manufact. 5, 293–299 (1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Simple quasi-two-dimensional gripper based on a ring trap. (a)–(c) Superposition of a ring trap and a point trap. (d) Beads trapped along ring. (e) Same as (d) after decrease in ring diameter. (f), (g) Removing one bead from the ring. (h) Inserting a bead. (i) Quasi-two-dimensional gripper based on a ring trap.

Fig. 2
Fig. 2

Instability in the z direction is prevalent with three-dimensional optical gripping. (a), (b) The object is gripped by four beads. (c) Object slips toward and below one of the gripper beads. (d) Object displaces one of the gripper beads.

Fig. 3
Fig. 3

Three-dimensional optical gripper with six beads, above the focal plane (red/brighter) and below (blue/darker). (a) Sample configuration with trapped object. (b)–(e) Sample assembly of two sets of triplets that hold trapped object, a Saccharomyces cerevisiae cell. Note that all gripper beads are out of focus and thus provide gripping from above and below.

Fig. 4
Fig. 4

(a), (b) Schematic of triplet traps ( 2.5 μm diameter beads, green) with trapped object ( 5 μm diameter, blue) and light cones ( 45 ° incident angle, red). (c) 13% fraction of the object is intersected by the light cone (ignoring light diffraction within the beads). (d) Fraction overlap as a function of NA. This fraction increases with bead size and NA. (e) The peak light intensity, relative to the light intensity at the focal point versus NA.

Fig. 5
Fig. 5

“Long exposure” images (minimum intensity overlays) from image sequences for (a) four-point and (b) six-point grippers. The moving object appears as a dark streak.

Metrics