Abstract

We investigate efficient generation of far-infrared (far-IR) radiation in 1330μm based on difference-frequency generation in a periodically poled LiNbO3 waveguide. The efficient conversion is made possible by utilizing a surface-emitting geometry under which the two incoming optical waves propagate along a waveguide, whereas the far-IR radiation is emitted from the waveguide surface. Under such a configuration, we can exploit the enhancements to the second-order nonlinear coefficients due to polariton resonances in the far-IR region. Based on our estimates, the average output power is expected to reach 2.1mW.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
    [CrossRef]
  2. B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
    [CrossRef]
  3. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
    [CrossRef]
  4. W. Shi, Y. J. Ding, K. Vodopyanov, and N. Fernelius, “Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
    [CrossRef]
  5. K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
    [CrossRef]
  6. D. N. Nikogosyan, Nonlinear Optical Crystals, (Springer, 2005).
  7. K. L. Vodopyanov and P. G. Schunemann, “Efficient difference-frequency generation of 7–20 μm radiation in CdGeAs2,” Opt. Lett. 23, 1096–1098 (1998).
    [CrossRef]
  8. K. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in a single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
    [CrossRef]
  9. V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008).
    [CrossRef]
  10. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17, 14395–14404 (2009).
    [CrossRef] [PubMed]
  11. C. Liberale, V. Degiorgio, M. Marangoni, G. Galzerano, and R. Ramponi, “Measurement of the nonlinear phase shift induced by cascaded interactions in a periodically poled lithium niobate waveguide,” Opt. Lett. 30, 2448–2450 (2005).
    [CrossRef] [PubMed]
  12. M. Bache and F. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
    [CrossRef]
  13. P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999).
    [CrossRef]
  14. S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford, Calif., Microwave Lab. Rep. 1851, 1970.
  15. J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
    [CrossRef]
  16. R. Song, Y. J. Ding, and I. B. Zotova, “Fingerprinting malathion vapor: a simulant for VX nerve agent,” Proc. SPIE 6949, 694903 (2008).
    [CrossRef]
  17. H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999).
    [PubMed]
  18. T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).
  19. C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), p. 98.
  20. G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
    [CrossRef] [PubMed]
  21. G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003).
    [CrossRef]
  22. J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
    [CrossRef] [PubMed]
  23. A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
    [CrossRef] [PubMed]
  24. Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001).
    [CrossRef]
  25. Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005).
    [CrossRef]
  26. E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 695–702.
  27. Y. J. Ding, “Efficient generation of high-frequency THz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett. 35, 262–264 (2010).
    [CrossRef] [PubMed]
  28. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically-poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
    [CrossRef] [PubMed]
  29. T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003).
    [CrossRef]

2010 (2)

M. Bache and F. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

Y. J. Ding, “Efficient generation of high-frequency THz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett. 35, 262–264 (2010).
[CrossRef] [PubMed]

2009 (5)

L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based up-conversion detector,” Opt. Express 17, 14395–14404 (2009).
[CrossRef] [PubMed]

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

2008 (2)

R. Song, Y. J. Ding, and I. B. Zotova, “Fingerprinting malathion vapor: a simulant for VX nerve agent,” Proc. SPIE 6949, 694903 (2008).
[CrossRef]

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

2006 (1)

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

2005 (3)

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005).
[CrossRef]

D. N. Nikogosyan, Nonlinear Optical Crystals, (Springer, 2005).

C. Liberale, V. Degiorgio, M. Marangoni, G. Galzerano, and R. Ramponi, “Measurement of the nonlinear phase shift induced by cascaded interactions in a periodically poled lithium niobate waveguide,” Opt. Lett. 30, 2448–2450 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

2003 (4)

G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003).
[CrossRef]

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), p. 98.

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003).
[CrossRef]

2002 (3)

2001 (1)

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001).
[CrossRef]

2000 (1)

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

1999 (2)

H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999).
[PubMed]

P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999).
[CrossRef]

1998 (1)

1996 (1)

1985 (1)

E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 695–702.

1970 (1)

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford, Calif., Microwave Lab. Rep. 1851, 1970.

Aleese, L. M.

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Avetisyan, Y.

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001).
[CrossRef]

Bache, M.

M. Bache and F. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

Bakker, J. M.

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

Behler, J.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

Belkin, M. A.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Belyanin, A.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Bosenberg, W. R.

Brown, C.

Byer, R. L.

Capasso, F.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Chen, T.-S.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Davies, A. G.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Degiorgio, V.

Dhillon, S.

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

Diehl, L.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Ding, Y. J.

Duncan, M. A.

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Eckardt, R. C.

Faist, J.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Faugeras, C.

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

Fejer, M. M.

Fernelius, N.

Fielicke, A.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

Fischer, C.

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), p. 98.

Fischer, M.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Galzerano, G.

Ho, Y.-S.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Holdsworth, R. J.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Hony, S.

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Ito, H.

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005).
[CrossRef]

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003).
[CrossRef]

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001).
[CrossRef]

Kasyutich, V. L.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Kawase, K.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Khanna, S.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Kirilyuk, A.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

Kiyokawa, S.

H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999).
[PubMed]

Konek, C. T.

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

Korter, T. M.

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

Kurz, J. R.

Lee, B. G.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Lee, C.-M.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Leung, T.-K.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Liberale, C.

Lin, M.-Y.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Lin, Y.-S.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Linfield, E. H.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Loza-Alvarez, P.

Ma, L.

Marangoni, M.

Marcadet, X.

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

Martin, P. A.

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Meijer, G.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003).
[CrossRef]

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Missey, M.

Moran, J. S.

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

Myers, L. E.

Nagasawa, H.

H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999).
[PubMed]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals, (Springer, 2005).

Palik, E. D.

E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 695–702.

E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 695–702.

Parameswaran, K.

Pflügl, C.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Ramponi, R.

Ratsch, C.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

Reid, D. T.

Roussev, R. V.

Sasaki, Y.

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005).
[CrossRef]

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001).
[CrossRef]

Scheffler, M.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

Schunemann, P. G.

Shi, W.

Shikata, J.

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Sibbett, W.

Sigrist, M. W.

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), p. 98.

Sirtori, C.

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

Slattery, O.

Song, R.

R. Song, Y. J. Ding, and I. B. Zotova, “Fingerprinting malathion vapor: a simulant for VX nerve agent,” Proc. SPIE 6949, 694903 (2008).
[CrossRef]

Suhara, T.

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003).
[CrossRef]

Sussman, S. S.

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford, Calif., Microwave Lab. Rep. 1851, 1970.

Tang, X.

Thielens, A. G. G. M.

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Udagawa, Y.

H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999).
[PubMed]

van Hejnsbergen, D.

G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003).
[CrossRef]

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Vasanelli, A.

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

Vodopyanov, K.

Vodopyanov, K. L.

von Helden, G.

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003).
[CrossRef]

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Wang, Q. J.

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

Waters, L. B. F. M.

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Wilkinson, J.

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

Wise, F.

M. Bache and F. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

Witko, E. M.

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

Wittman, A.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Wu, C.-H.

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

Yokoyama, H.

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005).
[CrossRef]

Zhang, H.

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

Zotova, I. B.

R. Song, Y. J. Ding, and I. B. Zotova, “Fingerprinting malathion vapor: a simulant for VX nerve agent,” Proc. SPIE 6949, 694903 (2008).
[CrossRef]

Anticancer Res. (1)

H. Nagasawa, Y. Udagawa, and S. Kiyokawa, “Evidence that irradiation of far-infrared rays inhibits mammary tumor growth in SHN mice,” Anticancer Res. 19, 1797–1800 (1999).
[PubMed]

Appl. Phys. B (2)

Y. Avetisyan, Y. Sasaki, and H. Ito, “Analysis of THz-wave surface-emitting difference-frequency generation in periodically-poled lithium niobate waveguide,” Appl. Phys. B 73, 511–514(2001).
[CrossRef]

V. L. Kasyutich, R. J. Holdsworth, and P. A. Martin, “Mid-infrared laser absorption spectrometers based upon all-diode laser difference frequency generation and a room temperature quantum cascade laser for the detection of CO, N2O, and NO,” Appl. Phys. B 92, 271–279 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

J. Wilkinson, C. T. Konek, J. S. Moran, E. M. Witko, and T. M. Korter, “Terahertz absorption spectrum of triacetone triperoxide (TATP),” Chem. Phys. Lett. 478, 172–174 (2009).
[CrossRef]

Electron. Lett. (1)

Y. Sasaki, H. Yokoyama, and H. Ito, “Surface-emitting continuous-wave terahertz radiation using periodically-poled lithium niobate,” Electron. Lett. 41, 712–713 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Suhara, Y. Avetisyan, and H. Ito, “Theoretical analysis of laterally emitting terahertz-wave generation by difference-frequency generation in channel waveguides,” IEEE J. Quantum Electron. 39, 166–171 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. G. Lee, H. Zhang, C. Pflügl, L. Diehl, M. A. Belkin, M. Fischer, A. Wittman, J. Faist, and F. Capasso, “Broadband distributed-feedback quantum cascade laser array operating from 8.0 to 9.8 μm,” IEEE Photon. Technol. Lett. 21, 914–916 (2009).
[CrossRef]

J. Med. Biol. Eng. (1)

T.-K. Leung, C.-M. Lee, M.-Y. Lin, Y.-S. Ho, T.-S. Chen, C.-H. Wu, and Y.-S. Lin, “Far infrared ray irradiation induces intracellular generation of nitric oxide in breast cancer cells,” J. Med. Biol. Eng. 29, 15–18 (2009).

J. Phys. Chem. A (1)

G. von Helden, D. van Hejnsbergen, and G. Meijer, “Resonant ionization using IR light: a new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters,” J. Phys. Chem. A 107, 1671–1688 (2003).
[CrossRef]

J. Phys. D (1)

K. Kawase, J. Shikata, and H. Ito, “Terahertz wave parametric source,” J. Phys. D 35, R1–R14 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (7)

Y. J. Ding, “Efficient generation of high-frequency THz waves from highly lossy second-order nonlinear medium at polariton resonance under transverse-pumping geometry,” Opt. Lett. 35, 262–264 (2010).
[CrossRef] [PubMed]

K. L. Vodopyanov and P. G. Schunemann, “Efficient difference-frequency generation of 7–20 μm radiation in CdGeAs2,” Opt. Lett. 23, 1096–1098 (1998).
[CrossRef]

P. Loza-Alvarez, C. T. A. Brown, D. T. Reid, W. Sibbett, and M. Missey, “High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 μm,” Opt. Lett. 24, 1523–1525 (1999).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically-poled LiNbO3,” Opt. Lett. 21, 591–593 (1996).
[CrossRef] [PubMed]

K. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in a single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett. 27, 43–45 (2002).
[CrossRef]

W. Shi, Y. J. Ding, K. Vodopyanov, and N. Fernelius, “Efficient, tunable, and coherent 0.18–5.27 THz source based on GaSe crystal,” Opt. Lett. 27, 1454–1456 (2002).
[CrossRef]

C. Liberale, V. Degiorgio, M. Marangoni, G. Galzerano, and R. Ramponi, “Measurement of the nonlinear phase shift induced by cascaded interactions in a periodically poled lithium niobate waveguide,” Opt. Lett. 30, 2448–2450 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (1)

M. Bache and F. Wise, “Type-I cascaded quadratic soliton compression in lithium niobate: compressing femtosecond pulses from high-power fiber lasers,” Phys. Rev. A 81, 053815 (2010).
[CrossRef]

Phys. Rev. Lett. (2)

J. M. Bakker, L. M. Aleese, G. Meijer, and G. von Helden, “Fingerprinting IR spectroscopy to probe amino acid conformations in the gas phase,” Phys. Rev. Lett. 91, 203003 (2003).
[CrossRef] [PubMed]

A. Fielicke, A. Kirilyuk, C. Ratsch, J. Behler, M. Scheffler, G. von Helden, and G. Meijer, “Structure determination of isolated metal clusters via far-infrared spectroscopy,” Phys. Rev. Lett. 93, 023401 (2004).
[CrossRef] [PubMed]

Phys. Status Solidi A (1)

C. Sirtori, S. Dhillon, C. Faugeras, A. Vasanelli, and X. Marcadet, “Quantum cascade lasers: the semiconductor solution for lasers in the mid- and far-infrared spectral regions,” Phys. Status Solidi A 203, 3533–3537 (2006).
[CrossRef]

Proc. SPIE (1)

R. Song, Y. J. Ding, and I. B. Zotova, “Fingerprinting malathion vapor: a simulant for VX nerve agent,” Proc. SPIE 6949, 694903 (2008).
[CrossRef]

Science (1)

G. von Helden, A. G. G. M. Thielens, D. van Hejnsbergen, M. A. Duncan, S. Hony, L. B. F. M. Waters, and G. Meijer, “Titanium carbide nanocrystals in circumstellar environments,” Science 288, 313–316 (2000).
[CrossRef] [PubMed]

Other (4)

D. N. Nikogosyan, Nonlinear Optical Crystals, (Springer, 2005).

S. S. Sussman, “Tunable light scattering from transverse optical modes in lithium niobate,” Stanford University, Stanford, Calif., Microwave Lab. Rep. 1851, 1970.

C. Fischer and M. W. Sigrist, “Mid-IR difference frequency generation,” in Solid-State Mid-Infrared Laser Sources, I.T.Sorokina and K.L.Vodopyanov, eds. (Springer, 2003), p. 98.

E. D. Palik, “Lithium niobate (LiNbO3),” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic, 1985), pp. 695–702.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Transmission spectrum of atmosphere.

Fig. 2
Fig. 2

Square of the effective nonlinear-optical (NLO) coefficient normalized by the square of the electronic NLO coefficient is plotted versus wavelength.

Fig. 3
Fig. 3

Spectrum of absorption coefficient based on Ref. [26].

Fig. 4
Fig. 4

Surface-emitting geometry for efficient generation of far-IR radiation at λ FIR from two optical waves at λ 1 and λ 2 , propagating in an MgO-doped PPLN Y-cut waveguide with poling period of Λ. Tuning of the output wavelength can be achieved by changing the temperature.

Fig. 5
Fig. 5

Upper curve corresponds to the waveguide-width cutoff for the second mode at 1.064 μm ; lower curve corresponds to the waveguide-width cutoff for the first mode in the range of 1.103 1.352 μm .

Fig. 6
Fig. 6

Poling period of bulk MgO-doped PPLN versus output wavelength: upper and lower curves correspond to the conditions that one of the input wavelengths is set to 1.064 μm and 800 nm , respectively.

Fig. 7
Fig. 7

Normalized conversion efficiency, defined as output power divided by the product of two input powers, is plotted versus output wavelength, for three values of normalized mode overlap; see Eq. (8).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

d eff = d e + j S j ν 0 j 2 ν 0 j 2 ν 2 i ν Γ j d Q j ,
P FIR = d eff E 1 E 2 * exp { i [ ω FIR t ( k 1 k 2 ) x ] } + c . c . ,
Λ = 2 π k 1 k 2 ,
P FIR P FIR , 0 cos ( ω FIR t ) ,
d P out d Ω = z 0 ω 4 L 2 ( 1 sin 2 θ cos 2 ϕ ) 32 π 2 c 2 [ sin ( ω L cos θ / 2 c ) ω L cos θ / 2 c ] 2 ( w / 2 w / 2 d y t / 2 t / 2 | P FIR , 0 | d x ) 2 ,
P out = 0 π sin θ d θ 0 π d P out d Ω d ϕ .
P out 16 π | d b | 2 L P 1 P 2 ξ c ε 0 3 λ FIR 3 n 1 n 2 ,
ξ = ( w / 2 w / 2 d z t / 2 t / 2 E 1 E 2 d y ) 2 ( d z E 1 2 d y ) ( d z E 2 2 d y ) ,

Metrics