Abstract

We propose an accurate measurement of the evolution of the emission cross section of Nd:YVO4 versus temperature around 1064nm. This was done by using two complementary methods involving spectrum acquisition and laser oscillator small signal gain measurement. We observed a 44% decrease of the peak emission cross section for a 64°C temperature increase but also a shift of the peak emission cross section wavelength at a rate of 3pm/°C. The influence of the crystal temperature on the performance of a laser oscillator in continuous wave was also investigated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Huber, C. Krankel, and K. Petermann, “Solid-state lasers: status and future,” J. Opt. Soc. Am. B 27, B93–B105 (2010).
    [Crossref]
  2. J. Hecht, “Short history of laser development,” Appl. Opt. 49, F99–F122 (2010).
    [Crossref] [PubMed]
  3. L. McDonagh, R. Wallenstein, and A. Nebel, “111 W, 110 MHzrepetition-rate, passively mode-locked TEM00 Nd:YVO4 master oscillator power amplifier pumped at 888 nm,” Opt. Lett. 32, 1259–1261 (2007).
    [Crossref] [PubMed]
  4. M. Luhrmann, C. Theobald, R. Wallenstein, and J. A. L’Huillier, “High energy cw-diode pumped Nd:YVO4 regenerative amplifier with efficient second harmonic generation,” Opt. Express 17, 22761–22766 (2009).
    [Crossref]
  5. Q. Liu, X. P. Yan, X. Fu, M. L. Gong, and D. S. Wang, “183 W TEM00 mode acoustic-optic Q-switched MOPA laser at 850 kHz,” Opt. Express 17, 5636–5644 (2009).
    [Crossref] [PubMed]
  6. X. P. Yan, Q. Liu, X. Fu, H. L. Chen, M. L. Gong, and D. S. Wang, “High repetition rate dual-rod acousto-optics Q-switched composite Nd:YVO4 laser,” Opt. Express 17, 21956–21968 (2009).
    [Crossref] [PubMed]
  7. P. Zhu, D. J. Li, P. X. Hu, A. Schell, P. Shi, C. R. Haas, N. A. L. Wu, and K. M. Du, “High efficiency 165 W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880 nm,” Opt. Lett. 33, 1930–1932 (2008).
    [Crossref] [PubMed]
  8. J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
    [Crossref]
  9. J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd: doped crystals,” Opt. Express 16, 8995–9010 (2008).
    [Crossref] [PubMed]
  10. Q. Mingxin, D. J. Booth, G. W. Baxter, and G. C. Bowkett, “Performance of a Nd:YVO4 microchip laser with continuous-wave pumping at wavelengths between 741 and 825 nm,” Appl. Opt. 32, 2085–2086 (1993).
    [Crossref] [PubMed]
  11. D. K. Sardar, and R. M. Yow, “Stark components of F-4(3/2), I-4(9/2) and I-4(11/2) manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
    [Crossref]
  12. G. Turri, H. P. Jenssen, F. Cornacchia, M. Tonelli, and M. Bassi, “Temperature-dependent stimulated emission cross section in Nd3+:YVO4 crystals,” J. Opt. Soc. Am. B 26, 2084–2088 (2009).
    [Crossref]
  13. B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
    [Crossref]
  14. F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
    [Crossref]
  15. J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
    [Crossref]
  16. A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06 μm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41, 7052–7057 (2002).
    [Crossref] [PubMed]
  17. J. Dong, M. Bass, and C. Walters, “Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses,” J. Opt. Soc. Am. B 21, 454–457 (2004).
    [Crossref]
  18. O. Kimmelma, I. Tittonen, and S. C. Buchter, “Thermal tuning of laser pulse parameters in passively Q-switched Nd:YAG lasers,” Appl. Opt. 47, 4262–4266 (2008).
    [Crossref] [PubMed]
  19. T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
    [Crossref]
  20. M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
    [Crossref]

2010 (2)

2009 (5)

2008 (3)

2007 (1)

2005 (2)

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

2004 (1)

2003 (1)

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

2002 (1)

2000 (1)

D. K. Sardar, and R. M. Yow, “Stark components of F-4(3/2), I-4(9/2) and I-4(11/2) manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[Crossref]

1997 (1)

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

1993 (1)

1982 (1)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[Crossref]

Altmann, K.

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

Aull, B.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[Crossref]

Balembois, F.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd: doped crystals,” Opt. Express 16, 8995–9010 (2008).
[Crossref] [PubMed]

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

Bass, M.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

J. Dong, M. Bass, and C. Walters, “Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses,” J. Opt. Soc. Am. B 21, 454–457 (2004).
[Crossref]

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06 μm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41, 7052–7057 (2002).
[Crossref] [PubMed]

Bassi, M.

Baxter, G. W.

Booth, D. J.

Bowkett, G. C.

Brickeen, B. K.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

Brun, A.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

Buchter, S. C.

Chen, H. L.

Chenais, S.

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

Cornacchia, F.

Didierjean, J.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd: doped crystals,” Opt. Express 16, 8995–9010 (2008).
[Crossref] [PubMed]

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

Dong, J.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

J. Dong, M. Bass, and C. Walters, “Temperature-dependent stimulated-emission cross section and concentration quenching in Nd3+-doped phosphate glasses,” J. Opt. Soc. Am. B 21, 454–457 (2004).
[Crossref]

Druon, F.

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

Du, K. M.

Falcoz, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

Forget, S.

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

Fu, X.

Fujioka, K.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Fujita, H.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Funahashi, K.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Georges, P.

J. Didierjean, E. Herault, F. Balembois, and P. Georges, “Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd: doped crystals,” Opt. Express 16, 8995–9010 (2008).
[Crossref] [PubMed]

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

Gong, M. L.

Haas, C. R.

Hecht, J.

Herault, E.

Howard, A.

Hu, P. X.

Huber, G.

Imasaki, K.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Jenssen, H.

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[Crossref]

Jenssen, H. P.

Kerboull, F.

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

Kimmelma, O.

Krankel, C.

L’Huillier, J. A.

Li, D. J.

Liu, Q.

Luhrmann, M.

McDonagh, L.

Mingxin, Q.

Motokoshi, S.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Nakatsuka, M.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Nebel, A.

Petermann, K.

Pflaum, C.

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

Rapaport, A.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

A. Rapaport, S. Z. Zhao, G. H. Xiao, A. Howard, and M. Bass, “Temperature dependence of the 1.06 μm stimulated emission cross section of neodymium in YAG and in GSGG,” Appl. Opt. 41, 7052–7057 (2002).
[Crossref] [PubMed]

Saiki, T.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Sardar, D. K.

D. K. Sardar, and R. M. Yow, “Stark components of F-4(3/2), I-4(9/2) and I-4(11/2) manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[Crossref]

Schell, A.

Shi, P.

Szipocs, F.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

Theobald, C.

Tittonen, I.

Tonelli, M.

Turri, G.

Ueda, K.

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

Vigil, S.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

Wallenstein, R.

Walters, C.

Wang, D. S.

Weichman, L. S.

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

Wu, N. A. L.

Xiao, G. H.

Yamanaka, C.

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Yan, X. P.

Yow, R. M.

D. K. Sardar, and R. M. Yow, “Stark components of F-4(3/2), I-4(9/2) and I-4(11/2) manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[Crossref]

Zhao, S. Z.

Zhu, P.

Appl. Opt. (4)

IEEE J. Quantum Electron. (3)

B. Aull and H. Jenssen, “Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections,” IEEE J. Quantum Electron. 18, 925–930 (1982).
[Crossref]

F. Balembois, F. Falcoz, F. Kerboull, F. Druon, P. Georges, and A. Brun, “Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-Switched Cr:LiSAF laser,” IEEE J. Quantum Electron. 33, 269–278 (1997).
[Crossref]

M. Bass, L. S. Weichman, S. Vigil, and B. K. Brickeen, “The temperature dependence of Nd3+ doped solid-state lasers,” IEEE J. Quantum Electron. 39, 741–748 (2003).
[Crossref]

J. Opt. Soc. Am. B (3)

Opt. Commun. (1)

T. Saiki, K. Funahashi, S. Motokoshi, K. Imasaki, K. Fujioka, H. Fujita, M. Nakatsuka, and C. Yamanaka, “Temperature characteristics of small signal gain for Nd/Cr:YAG ceramic lasers,” Opt. Commun. 282, 614–616 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

D. K. Sardar, and R. M. Yow, “Stark components of F-4(3/2), I-4(9/2) and I-4(11/2) manifold energy levels and effects of temperature on the laser transition of Nd3+ in YVO4,” Opt. Mater. 14, 5–11 (2000).
[Crossref]

Phys. Status Solidi A (1)

J. Dong, A. Rapaport, M. Bass, F. Szipocs, and K. Ueda, “Temperature-dependent stimulated emission cross section and concentration quenching in highly doped Nd3+:YAG crystals,” Phys. Status Solidi A 202, 2565–2573 (2005).
[Crossref]

Proc. SPIE (1)

J. Didierjean, S. Forget, S. Chenais, F. Druon, F. Balembois, P. Georges, K. Altmann, and C. Pflaum, “High resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration,” Proc. SPIE 5707, 370–379 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup used for fluorescence spectra acquisition.

Fig. 2
Fig. 2

Relative emission-cross section spectrum around 1064 nm versus temperature.

Fig. 3
Fig. 3

Relative value of the emission cross section versus temperature. Maximal value max [ σ em ( T ) ] / max [ σ em ( 16 ° C ) ] and value for a fixed wavelength λ 0 corresponding to the peak emission cross section at 16 ° C σ em ( λ 0 , T ) / max [ σ em ( 16 ° C ) ] .

Fig. 4
Fig. 4

Maximal emission-cross section wavelength (blue) and laser emission wavelength (red) versus temperature (see Section 3).

Fig. 5
Fig. 5

Experimental setup used for small signal gain and CW measurements. P stands for polarizer and λ / 4 for quarter-wave plate.

Fig. 6
Fig. 6

Double-pass small signal gain as a function of the absorbed pump power for three different crystal temperatures. Solid curves, exponential fit for 20 ° C , modeling for 45 ° C and 80 ° C .

Fig. 7
Fig. 7

Efficiency curves in the CW regime for 25% coupling and crystal temperatures of 20 ° C , 45 ° C , and 80 ° C .

Fig. 8
Fig. 8

Efficiency curves for 50% coupling and crystal temperatures of 20 ° C , 45 ° C , and 80 ° C .

Fig. 9
Fig. 9

Efficiency curves for 75% coupling and crystal temperatures of 20 ° C , 45 ° C , and 80 ° C .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ EM ( λ ) = ( λ ¯ ) 4 8 π c n 2 τ rad I ( λ ) I ( λ ) d λ .
G 0 2 ( 1 T eq ) ( 1 δ ) = 1.
G 0 2 ( P abs , T ) = exp { K max [ σ em ( T ) ] P abs } ,

Metrics