Abstract

In image transfer, one aims to reproduce at an image plane the field distribution of the field at the source plane. We consider a near-field image transfer scheme where an image with subwavelength resolution can be transferred to a metal–dielectric interface. In this scheme, the presence of a surface plasmon polariton provides a large wave vector range where the transfer function is flat, thus enabling the image transfer with subwavelength resolution.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
    [CrossRef] [PubMed]
  3. D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
    [CrossRef]
  4. R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
    [CrossRef]
  5. T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
    [CrossRef]
  6. D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005).
    [CrossRef]
  7. D. Shao and S. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13, 6964–6973 (2005).
    [CrossRef] [PubMed]
  8. M. Arnold and R. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
    [CrossRef] [PubMed]
  9. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
    [CrossRef] [PubMed]
  10. V. Intaraprasonk and S. Fan, “Wave-vector space picture for radiationless focusing and beaming,” Opt. Lett. 34, 2967–2969(2009).
    [CrossRef] [PubMed]
  11. R. Muller and A. Buffington, “Real-time correction of atmospherically degraded telescope images through image sharpening,” J. Opt. Soc. Am. 64, 1200–1210 (1974).
    [CrossRef]
  12. E.D.Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).
  13. G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290(2004).
    [CrossRef] [PubMed]
  14. C. Moore, R. Blaikie, and M. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009).
    [CrossRef] [PubMed]
  15. A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
    [CrossRef] [PubMed]
  16. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
    [CrossRef] [PubMed]
  17. X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004).
    [CrossRef] [PubMed]
  18. X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
    [CrossRef]
  19. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
    [CrossRef] [PubMed]
  20. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef] [PubMed]
  21. J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
    [CrossRef] [PubMed]

2010

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

2009

C. Moore, R. Blaikie, and M. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009).
[CrossRef] [PubMed]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

V. Intaraprasonk and S. Fan, “Wave-vector space picture for radiationless focusing and beaming,” Opt. Lett. 34, 2967–2969(2009).
[CrossRef] [PubMed]

2008

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

2007

M. Arnold and R. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
[CrossRef] [PubMed]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[CrossRef] [PubMed]

2005

D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

D. Shao and S. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13, 6964–6973 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

2004

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

G. Veronis, R. W. Dutton, and S. Fan, “Method for sensitivity analysis of photonic crystal devices,” Opt. Lett. 29, 2288–2290(2004).
[CrossRef] [PubMed]

D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[CrossRef]

R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

1974

Alkaisi, M.

R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

Arnold, M.

Blaikie, R.

C. Moore, R. Blaikie, and M. Arnold, “An improved transfer-matrix model for optical superlenses,” Opt. Express 17, 14260–14269 (2009).
[CrossRef] [PubMed]

M. Arnold and R. Blaikie, “Subwavelength optical imaging of evanescent fields using reflections from plasmonic slabs,” Opt. Express 15, 11542–11552 (2007).
[CrossRef] [PubMed]

R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[CrossRef]

Bogy, D.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

Buffington, A.

Catrysse, P. B.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Chen, S.

D. Shao and S. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13, 6964–6973 (2005).
[CrossRef] [PubMed]

D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

Cui, J.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Dutton, R. W.

Fan, S.

Fang, L.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Feng, Q.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

Ibanescu, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Intaraprasonk, V.

Ishihara, T.

Joannopoulos, J. D.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Karalis, A.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Lidorikis, E.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Liu, Y.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Liu, Z. W.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Luo, X.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

X. Luo and T. Ishihara, “Subwavelength photolithography based on surface-plasmon polariton resonance,” Opt. Express 12, 3055–3065 (2004).
[CrossRef] [PubMed]

Ma, J.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

McNab, S.

R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

Melville, D.

R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[CrossRef]

Merlin, R.

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[CrossRef] [PubMed]

Moore, C.

Muller, R.

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

Shao, D.

D. Shao and S. Chen, “Numerical simulation of surface-plasmon-assisted nanolithography,” Opt. Express 13, 6964–6973 (2005).
[CrossRef] [PubMed]

D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

Shen, J. T.

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Soljacic, M.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Veronis, G.

Wang, C.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

Wei, Q. H.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Wolf, C.

D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[CrossRef]

Xu, T.

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Yang, X.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

Zeng, B.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

Appl. Phys. B

T. Xu, L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, “Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns,” Appl. Phys. B 97, 175–179 (2009).
[CrossRef]

Appl. Phys. Lett.

D. Shao and S. Chen, “Surface-plasmon-assisted nanoscale photolithography by polarized light,” Appl. Phys. Lett. 86, 253107 (2005).
[CrossRef]

D. Melville, R. Blaikie, and C. Wolf, “Submicron imaging with a planar silver lens,” Appl. Phys. Lett. 84, 4403–4405 (2004).
[CrossRef]

Int. J. Nanosci.

R. Blaikie, M. Alkaisi, S. McNab, and D. Melville, “Nanoscale optical patterning using evanescent fields and surface plasmons,” Int. J. Nanosci. 3, 405–417 (2004).
[CrossRef]

J. Opt.

X. Yang, L. Fang, B. Zeng, C. Wang, Q. Feng, and X. Luo, “Deep subwavelength photolithography based on surface plasmon polariton resonance with metallic grating waveguide heterostructure,” J. Opt. 12, 045001 (2010).
[CrossRef]

J. Opt. Soc. Am.

Nano Lett.

Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005).
[CrossRef] [PubMed]

Nat. Nanotechnol.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

A. Karalis, E. Lidorikis, M. Ibanescu, J. D. Joannopoulos, and M. Soljacic, “Surface-plasmon-assisted guiding of broadband slow and subwavelength light in air,” Phys. Rev. Lett. 95, 063901 (2005).
[CrossRef] [PubMed]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).
[CrossRef] [PubMed]

J. T. Shen, P. B. Catrysse, and S. Fan, “Mechanism for designing metallic metamaterials with a high index of refraction,” Phys. Rev. Lett. 94, 197401 (2005).
[CrossRef] [PubMed]

Science

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537(2005).
[CrossRef] [PubMed]

R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007).
[CrossRef] [PubMed]

Other

E.D.Palik, ed., Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the near-field image transfer to the metal–dielectric interface. (b) FDFD simulation of the scheme. A plane wave at λ = 116 nm , at which ϵ Al = 1.047 + 0.077 i , is incident from the top, through a mask structure consisting of air slits in a metal film. (Metal mask is shown as green). The slit widths are λ / 2 , λ / 3 , and λ / 4 , respectively. (c) Same setup as (b) but without Al. In (b) and (c), the color maps the absolute value of the field amplitude.

Fig. 2
Fig. 2

(a) Dispersion curve of the surface plasmon between Al and air for lossless case (solid curve) and lossy case (dashed curve). (b) Transfer functions for the air–Al system at different image transfer distances (d); dashed, d = 0.15 λ ; dotted–dashed, d = 0.17 λ ; dotted–dotted–dashed, d = 0.25 λ . The solid curve is the transfer function without Al. (c) Same as (b) but for lossy case; dashed, d = 0.125 λ , N f = 0.83 ; dotted–dashed, d = 0.16 λ , N f = 1.4 ; dotted–dotted–dashed, d = 0.25 λ , N f = 2.9 .

Fig. 3
Fig. 3

Transfer functions for several values of ϵ m for (a) our scheme with image plane at the front interface of the negative permittivity material, and for (b) the negative permittivity super lens scheme in [1]. The first numbers in the legend are ϵ m .

Fig. 4
Fig. 4

(a) Schematic for the image transfer with extra PR layer. (b) Transfer function for the setup in (a) with λ = 152 nm , ϵ PR = 2.7 , ϵ Al = 2.6 + 0.22 i . Thickness of the air gap and the PR layer are 0.15 λ and 0.05 λ , respectively. (c) FDFD simulation of the setup in (b) with the same mask dimension as Figs. 1b, 1c but with a realistic dielectric constant ( ϵ mask = 0.55 + 1.43 i ).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

F t ( k y , z = d ) = F i ( k y , z = 0 ) T ( k y ) ,
( 2 π λ ) 2 y 2 | T ˜ ( y ) | 2 d y | T ˜ ( y ) | 2 d y = k 0 2 | F.T. [ y T ˜ ( y ) ] | 2 d k y | F.T. [ T ˜ ( y ) ] | 2 d k y = k 0 2 | d d k y [ T ( k y ) ] | 2 d k y | T ( k y ) | 2 d k y N f ,
( 2 y 2 + 2 z 2 + k d 2 ) F = 0 ,
T f ( k y , z ) = exp ( i k z , d ( k y ) z ) ,
T ( k y ) = ( 1 + r ( k y ) ) exp ( i k z , d d ) .
r ( k y ) = ( k z , d ϵ d k z , m ϵ m ) / ( k z , d ϵ d + k z , m ϵ m ) ,
k SP = Re [ ( ω / c ) ϵ m ϵ d ϵ m + ϵ d ]
w min 2 π / k SP .

Metrics