X. Guo and Z. Ren, “Photonic tunneling effect between two coupled single-atom laser cavities imbedded within a photonic crystal platform,” Phys. Rev. A 83, 013809 (2011).

[CrossRef]

J. Larson, “Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model,” Europhys. Lett. 90, 54001 (2010).

[CrossRef]

J. Larson and M. Horsdal, “Photonic Josephson effect, phase transitions, and chaos in optomechanical systems,” arXiv:1009.2945 (2010).

D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010).

[CrossRef]
[PubMed]

K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

[CrossRef]
[PubMed]

Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010).

[CrossRef]

S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010).

[CrossRef]

P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72 (2010).

[CrossRef]
[PubMed]

S. C. Lei, T. K. Ng, and R. K. Lee, “Photonic analogue of Josephson effect in a dual-species optical-lattice cavity,” Opt. Express 18, 14586–14597 (2010).

[CrossRef]
[PubMed]

B. M. Rodríguez-Lara and R. K. Lee, “Quantum phase transition of nonlinear light in the finite size Dicke Hamiltonian,” J. Opt. Soc. Am. B 27, 2443–2450 (2010).

[CrossRef]

X. Guo and S. Lü, “Controllable optical bistability in photonic-crystal one-atom laser,” Phys. Rev. A 80, 043826 (2009).

[CrossRef]

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).

[CrossRef]

S. Morrison and A. S. Parkins, “Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED,” Phys. Rev. Lett. 100, 040403 (2008).

[CrossRef]
[PubMed]

G. Liberti, F. Plastina, and F. Piperno, “Scaling behavior of the adiabatic Dicke model,” Phys. Rev. A 74, 022324(2006).

[CrossRef]

J. Vidal and S. Dusuel, “Finite-size scaling exponents in the Dicke model,” Europhys. Lett. 74, 817–822 (2006).

[CrossRef]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006).

[CrossRef]

M. J. Hartman, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006).

[CrossRef]

J. Reslen, L. Quiroga, and N. F. Johnson, “Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement,” Europhys. Lett. 69, 8–14 (2005).

[CrossRef]

N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004).

[CrossRef]
[PubMed]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).

[CrossRef]
[PubMed]

M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence(Springer-Verlag, 2000).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

P. D. Drummond and D. F. Walls, “Quantum theory of optical bistability. I: nonlinear polarizability model,” J. Phys. A 13, 725–741 (1980).

[CrossRef]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Ann. Phys. 76, 360–404 (1973).

[CrossRef]

Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).

[CrossRef]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).

[CrossRef]

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).

[CrossRef]

S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010).

[CrossRef]

K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

[CrossRef]
[PubMed]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).

[CrossRef]

M. J. Hartman, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006).

[CrossRef]

N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004).

[CrossRef]
[PubMed]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).

[CrossRef]
[PubMed]

K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

[CrossRef]
[PubMed]

Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010).

[CrossRef]

P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72 (2010).

[CrossRef]
[PubMed]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).

[CrossRef]

D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010).

[CrossRef]
[PubMed]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).

P. D. Drummond and D. F. Walls, “Quantum theory of optical bistability. I: nonlinear polarizability model,” J. Phys. A 13, 725–741 (1980).

[CrossRef]

J. Vidal and S. Dusuel, “Finite-size scaling exponents in the Dicke model,” Europhys. Lett. 74, 817–822 (2006).

[CrossRef]

N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004).

[CrossRef]
[PubMed]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).

[CrossRef]
[PubMed]

K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

[CrossRef]
[PubMed]

S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010).

[CrossRef]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).

S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010).

[CrossRef]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).

[CrossRef]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006).

[CrossRef]

K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

[CrossRef]
[PubMed]

X. Guo and Z. Ren, “Photonic tunneling effect between two coupled single-atom laser cavities imbedded within a photonic crystal platform,” Phys. Rev. A 83, 013809 (2011).

[CrossRef]

X. Guo and S. Lü, “Controllable optical bistability in photonic-crystal one-atom laser,” Phys. Rev. A 80, 043826 (2009).

[CrossRef]

M. J. Hartman, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006).

[CrossRef]

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).

[CrossRef]

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Ann. Phys. 76, 360–404 (1973).

[CrossRef]

Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).

[CrossRef]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006).

[CrossRef]

J. Larson and M. Horsdal, “Photonic Josephson effect, phase transitions, and chaos in optomechanical systems,” arXiv:1009.2945 (2010).

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

J. Reslen, L. Quiroga, and N. F. Johnson, “Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement,” Europhys. Lett. 69, 8–14 (2005).

[CrossRef]

D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010).

[CrossRef]
[PubMed]

N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004).

[CrossRef]
[PubMed]

J. Larson, “Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model,” Europhys. Lett. 90, 54001 (2010).

[CrossRef]

J. Larson and M. Horsdal, “Photonic Josephson effect, phase transitions, and chaos in optomechanical systems,” arXiv:1009.2945 (2010).

G. Liberti, F. Plastina, and F. Piperno, “Scaling behavior of the adiabatic Dicke model,” Phys. Rev. A 74, 022324(2006).

[CrossRef]

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Ann. Phys. 76, 360–404 (1973).

[CrossRef]

Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010).

[CrossRef]

X. Guo and S. Lü, “Controllable optical bistability in photonic-crystal one-atom laser,” Phys. Rev. A 80, 043826 (2009).

[CrossRef]

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).

S. Morrison and A. S. Parkins, “Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED,” Phys. Rev. Lett. 100, 040403 (2008).

[CrossRef]
[PubMed]

D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010).

[CrossRef]
[PubMed]

P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72 (2010).

[CrossRef]
[PubMed]

M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence(Springer-Verlag, 2000).

S. Morrison and A. S. Parkins, “Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED,” Phys. Rev. Lett. 100, 040403 (2008).

[CrossRef]
[PubMed]

G. Liberti, F. Plastina, and F. Piperno, “Scaling behavior of the adiabatic Dicke model,” Phys. Rev. A 74, 022324(2006).

[CrossRef]

G. Liberti, F. Plastina, and F. Piperno, “Scaling behavior of the adiabatic Dicke model,” Phys. Rev. A 74, 022324(2006).

[CrossRef]

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).

[CrossRef]

M. J. Hartman, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006).

[CrossRef]

J. Reslen, L. Quiroga, and N. F. Johnson, “Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement,” Europhys. Lett. 69, 8–14 (2005).

[CrossRef]

X. Guo and Z. Ren, “Photonic tunneling effect between two coupled single-atom laser cavities imbedded within a photonic crystal platform,” Phys. Rev. A 83, 013809 (2011).

[CrossRef]

J. Reslen, L. Quiroga, and N. F. Johnson, “Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement,” Europhys. Lett. 69, 8–14 (2005).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010).

[CrossRef]
[PubMed]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006).

[CrossRef]

S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010).

[CrossRef]

J. Vidal and S. Dusuel, “Finite-size scaling exponents in the Dicke model,” Europhys. Lett. 74, 817–822 (2006).

[CrossRef]

P. D. Drummond and D. F. Walls, “Quantum theory of optical bistability. I: nonlinear polarizability model,” J. Phys. A 13, 725–741 (1980).

[CrossRef]

Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010).

[CrossRef]

Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).

[CrossRef]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010).

[CrossRef]

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

K. Hepp and E. H. Lieb, “On the superradiant phase transition for molecules in a quantized radiation field: the Dicke maser model,” Ann. Phys. 76, 360–404 (1973).

[CrossRef]

J. Vidal and S. Dusuel, “Finite-size scaling exponents in the Dicke model,” Europhys. Lett. 74, 817–822 (2006).

[CrossRef]

J. Larson, “Circuit QED scheme for the realization of the Lipkin–Meshkov–Glick model,” Europhys. Lett. 90, 54001 (2010).

[CrossRef]

J. Reslen, L. Quiroga, and N. F. Johnson, “Direct equivalence between quantum phase transition phenomena in radiation-matter and magnetic systems: scaling of entanglement,” Europhys. Lett. 69, 8–14 (2005).

[CrossRef]

P. D. Drummond and D. F. Walls, “Quantum theory of optical bistability. I: nonlinear polarizability model,” J. Phys. A 13, 725–741 (1980).

[CrossRef]

M. J. Hartmann, F. G. S. L. Brandão, and M. B. Plenio, “Quantum many-body phenomena in coupled cavity arrays,” Laser Photon. Rev. 2, 527–556 (2008).

[CrossRef]

P. Nataf and C. Ciuti, “No-go theorem for superradiant quantum phase transitions in cavity QED and counter-example in circuit QED,” Nat. Commun. 1, 72 (2010).

[CrossRef]
[PubMed]

A. D. Greentree, C. Tahan, J. H. Cole, and L. C. L. Hollenberg, “Quantum phase transitions of light,” Nat. Phys. 2, 856–861(2006).

[CrossRef]

M. J. Hartman, F. G. S. L. Brandão, and M. B. Plenio, “Strongly interacting polaritons in coupled arrays of cavities,” Nat. Phys. 2, 849–855 (2006).

[CrossRef]

K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, “Dicke quantum phase transition with a superfluid gas in an optical cavity,” Nature 464, 1301–1306 (2010).

[CrossRef]
[PubMed]

R. H. Dicke, “Coherence in spontaneous radiation processes,” Phys. Rev. 93, 99–110 (1954).

[CrossRef]

R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963).

[CrossRef]

X. Guo and S. Lü, “Controllable optical bistability in photonic-crystal one-atom laser,” Phys. Rev. A 80, 043826 (2009).

[CrossRef]

Q. H. Chen, T. Liu, Y. Y. Zhang, and K. L. Wang, “Quantum phase transition in coupled two-level atoms in a single-mode cavity,” Phys. Rev. A 82, 053841 (2010).

[CrossRef]

S. Ferretti, L. C. Andreani, H. E. Türeci, and D. Gerace, “Photon correlations in a two-site nonlinear cavity system under coherent drive and dissipation,” Phys. Rev. A 82, 013841(2010).

[CrossRef]

Y. K. Wang and F. T. Hioe, “Phase transition in the Dicke model of superradiance,” Phys. Rev. A 7, 831–836 (1973).

[CrossRef]

G. Liberti, F. Plastina, and F. Piperno, “Scaling behavior of the adiabatic Dicke model,” Phys. Rev. A 74, 022324(2006).

[CrossRef]

X. Guo and Z. Ren, “Photonic tunneling effect between two coupled single-atom laser cavities imbedded within a photonic crystal platform,” Phys. Rev. A 83, 013809 (2011).

[CrossRef]

C. Emary and T. Brandes, “Quantum chaos triggered by precursors of a quantum phase transition: the Dicke model,” Phys. Rev. Lett. 90, 044101 (2003).

[CrossRef]
[PubMed]

N. Lambert, C. Emary, and T. Brandes, “Entanglement and the phase transition in single-mode superradiance,” Phys. Rev. Lett. 92, 073602 (2004).

[CrossRef]
[PubMed]

S. Morrison and A. S. Parkins, “Dynamical quantum phase transitions in the dissipative Lipkin–Meshkov–Glick model with proposed realization in optical cavity QED,” Phys. Rev. Lett. 100, 040403 (2008).

[CrossRef]
[PubMed]

D. Nagy, G. Konya, G. Szirmai, and P. Domokos, “Dicke-model phase transition in the quantum motion of a Bose–Einstein condensate,” Phys. Rev. Lett. 104, 130401 (2010).

[CrossRef]
[PubMed]

A. Imamoğlu, H. Schmidt, G. Woods, and M. Deutsch, “Strongly interacting photons in a nonlinear cavity,” Phys. Rev. Lett. 79, 1467–1470 (1997).

[CrossRef]

M. Orszag, Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence(Springer-Verlag, 2000).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University Press, 1997).

B. S. Garbow, J. M. Boyle, J. J. Dongarra, and C. B. Moler, Matrix Eigensystem Routines–EISPACK Guide Extension, Lecture Notes in Computer Science Volume 51 (Springer, 1977).

J. Larson and M. Horsdal, “Photonic Josephson effect, phase transitions, and chaos in optomechanical systems,” arXiv:1009.2945 (2010).