Abstract

The canonical problem of surface-wave propagation guided by the interface of two semi-infinite rugate filters made of isotropic dielectric materials was formulated and solved. Numerical studies showed that multiple Tamm waves—with different phase speeds, polarization states, and degrees of localization—can be guided by the interface of a homogeneous dielectric material and a rugate filter. Multiple Tamm waves and optical Tamm states are supported by a phase-defect interface in a rugate filter. A sudden change of either the mean refractive index or the amplitude of the sinusoidal variation of the refractive index also creates an interface that can guide multiple Tamm waves, as can the interface of two distinct rugate filters. Whereas the Tamm waves can be either p or s polarized, all optical Tamm states were found to be p polarized.

© 2011 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Phys. Usp. 51, 101–102 (2008).
  2. J. A. Polo, Jr. and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5, 234–246 (2011).
    [CrossRef]
  3. J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).
  4. I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
    [CrossRef]
  5. M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
    [CrossRef]
  6. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
    [CrossRef]
  7. R. Haupt and L. Wendler, “Dispersion and damping properties of plasmon polaritons in superlattice structures II. Semi-infinfinte superlattice,” Phys. Status Solidi B 142, 423–435 (1987).
    [CrossRef]
  8. S. V. Shiyanovskii, “Theory of surface electromagnetic waves in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 179, 133–138(1990).
    [CrossRef]
  9. M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
    [CrossRef]
  10. J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630–638 (2006).
    [CrossRef]
  11. A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
    [CrossRef]
  12. A. Namdar, “Tamm states in one-dimensional photonic crystals containing left-handed materials,” Opt. Commun. 278, 194–198(2007).
    [CrossRef]
  13. A. Lakhtakia and J. A. Polo, Jr., “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Pub. 2, 07021 (2007).
    [CrossRef]
  14. M. Faryad and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: canonical problem,” J. Nanophoton. 4, 043505 (2010).
    [CrossRef]
  15. W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528–533(1993).
    [CrossRef]
  16. W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
    [CrossRef]
  17. A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
    [CrossRef]
  18. V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
    [CrossRef]
  19. J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Dyakonov–Tamm waves guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A 26, 1615–1621 (2009).
    [CrossRef]
  20. J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Errata,” J. Opt. Soc. Am. A 26, 2399 (2009).
    [CrossRef]
  21. J. Gao, A. Lakhtakia, and M. Lei, “On Dyakonov–Tamm waves localized to a central twist defect in a structurally chiral material,” J. Opt. Soc. Am. B 26, B74–B82 (2009).
    [CrossRef]
  22. J. Gao, A. Lakhtakia, and M. Lei, “Simultaneous propagation of two Dyakonov–Tamm waves guided by the planar interface created in a chiral sculptured thin film by a sudden change of vapor flux direction,” Phys. Lett. A 374, 3370–3372(2010).
    [CrossRef]
  23. J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov–Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81, 013801(2010).
    [CrossRef]
  24. J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
    [CrossRef]
  25. M. Faryad and A. Lakhtakia, “Dyakonov–Tamm waves guided by a phase-twist combination defect in a sculptured nematic thin film,” Opt. Commun. 284, 160–168 (2011).
    [CrossRef]
  26. B. G. Bovard, “Rugate filter theory: an overview,” Appl. Opt. 32, 5427–5442 (1993).
    [CrossRef]
  27. P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), Sec. 5.3.3.2.
  28. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
    [CrossRef]
  29. I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. A 76, 849–850 (1932).
  30. H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
    [CrossRef]
  31. A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
    [CrossRef]
  32. P. Berini, “Long-range surface plasmon polaritons,” Adv. Opt. Photon. 1, 484–588 (2009).
    [CrossRef]
  33. Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).
  34. M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
    [CrossRef]
  35. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).
  36. G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals,” Phys. Rev. E 69, 016612(2004).
    [CrossRef]
  37. G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals,” Phys. Rev. E 70, 016606 (2004).
    [CrossRef]
  38. A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87, 261105 (2005).
    [CrossRef]

2011 (3)

J. A. Polo, Jr. and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5, 234–246 (2011).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “Dyakonov–Tamm waves guided by a phase-twist combination defect in a sculptured nematic thin film,” Opt. Commun. 284, 160–168 (2011).
[CrossRef]

2010 (4)

J. Gao, A. Lakhtakia, and M. Lei, “Simultaneous propagation of two Dyakonov–Tamm waves guided by the planar interface created in a chiral sculptured thin film by a sudden change of vapor flux direction,” Phys. Lett. A 374, 3370–3372(2010).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov–Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81, 013801(2010).
[CrossRef]

M. Faryad and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: canonical problem,” J. Nanophoton. 4, 043505 (2010).
[CrossRef]

M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
[CrossRef]

2009 (5)

2008 (4)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Phys. Usp. 51, 101–102 (2008).

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16, 9332–9343 (2008).
[CrossRef]

2007 (3)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

A. Namdar, “Tamm states in one-dimensional photonic crystals containing left-handed materials,” Opt. Commun. 278, 194–198(2007).
[CrossRef]

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Pub. 2, 07021 (2007).
[CrossRef]

2006 (3)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630–638 (2006).
[CrossRef]

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).

2005 (2)

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87, 261105 (2005).
[CrossRef]

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

2004 (3)

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), Sec. 5.3.3.2.

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals,” Phys. Rev. E 69, 016612(2004).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals,” Phys. Rev. E 70, 016606 (2004).
[CrossRef]

1999 (1)

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

1996 (1)

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

1994 (1)

M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
[CrossRef]

1993 (2)

1990 (2)

S. V. Shiyanovskii, “Theory of surface electromagnetic waves in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 179, 133–138(1990).
[CrossRef]

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

1987 (1)

R. Haupt and L. Wendler, “Dispersion and damping properties of plasmon polaritons in superlattice structures II. Semi-infinfinte superlattice,” Phys. Status Solidi B 142, 423–435 (1987).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

1975 (1)

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

1932 (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. A 76, 849–850 (1932).

Abdulhalim, I.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Agull├│-Rueda, F.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Alieva, E. V.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Arjavalingam, G.

Baboiu, D.-M.

M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
[CrossRef]

Baumeister, P. W.

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), Sec. 5.3.3.2.

Berini, P.

Bovard, B. G.

Brommer, K. D.

Brum, J. A.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Chang, L. L.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Cho, A. Y.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Ciumac, M.

M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
[CrossRef]

Datsko, V. N.

V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Phys. Usp. 51, 101–102 (2008).

Dragoman, D.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

Dragoman, M.

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

Esaki, L.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Fahr, S.

Faryad, M.

M. Faryad and A. Lakhtakia, “Dyakonov–Tamm waves guided by a phase-twist combination defect in a sculptured nematic thin film,” Opt. Commun. 284, 160–168 (2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: canonical problem,” J. Nanophoton. 4, 043505 (2010).
[CrossRef]

M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
[CrossRef]

Gao, J.

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov–Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81, 013801(2010).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Simultaneous propagation of two Dyakonov–Tamm waves guided by the planar interface created in a chiral sculptured thin film by a sudden change of vapor flux direction,” Phys. Lett. A 374, 3370–3372(2010).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Errata,” J. Opt. Soc. Am. A 26, 2399 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Dyakonov–Tamm waves guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A 26, 1615–1621 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “On Dyakonov–Tamm waves localized to a central twist defect in a structurally chiral material,” J. Opt. Soc. Am. B 26, B74–B82 (2009).
[CrossRef]

Haupt, R.

R. Haupt and L. Wendler, “Dispersion and damping properties of plasmon polaritons in superlattice structures II. Semi-infinfinte superlattice,” Phys. Status Solidi B 142, 423–435 (1987).
[CrossRef]

Hong, J. M.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Jaluria, Y.

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

Jen, Y.-J.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[CrossRef]

Joannopoulos, J. D.

Kavokin, A.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87, 261105 (2005).
[CrossRef]

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

Kirchartz, T.

Kivshar, Y. S.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Konopsky, V. N.

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Kopylov, A. A.

V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Phys. Usp. 51, 101–102 (2008).

Lakhtakia, A.

J. A. Polo, Jr. and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5, 234–246 (2011).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “Dyakonov–Tamm waves guided by a phase-twist combination defect in a sculptured nematic thin film,” Opt. Commun. 284, 160–168 (2011).
[CrossRef]

M. Faryad and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: canonical problem,” J. Nanophoton. 4, 043505 (2010).
[CrossRef]

M. Faryad and A. Lakhtakia, “On surface plasmon-polariton waves guided by the interface of a metal and a rugate filter with sinusoidal refractive-index profile,” J. Opt. Soc. Am. B 27, 2218–2223 (2010).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Simultaneous propagation of two Dyakonov–Tamm waves guided by the planar interface created in a chiral sculptured thin film by a sudden change of vapor flux direction,” Phys. Lett. A 374, 3370–3372(2010).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov–Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81, 013801(2010).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Dyakonov–Tamm waves guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A 26, 1615–1621 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Errata,” J. Opt. Soc. Am. A 26, 2399 (2009).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “On Dyakonov–Tamm waves localized to a central twist defect in a structurally chiral material,” J. Opt. Soc. Am. B 26, B74–B82 (2009).
[CrossRef]

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Pub. 2, 07021 (2007).
[CrossRef]

Lederer, F.

Lei, M.

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Simultaneous propagation of two Dyakonov–Tamm waves guided by the planar interface created in a chiral sculptured thin film by a sudden change of vapor flux direction,” Phys. Lett. A 374, 3370–3372(2010).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov–Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81, 013801(2010).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Dyakonov–Tamm waves guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A 26, 1615–1621 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Errata,” J. Opt. Soc. Am. A 26, 2399 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “On Dyakonov–Tamm waves localized to a central twist defect in a structurally chiral material,” J. Opt. Soc. Am. B 26, B74–B82 (2009).
[CrossRef]

Lin, C.-F.

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[CrossRef]

Malpuech, G.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87, 261105 (2005).
[CrossRef]

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

Martorell, J.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630–638 (2006).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals,” Phys. Rev. E 69, 016612(2004).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals,” Phys. Rev. E 70, 016606 (2004).
[CrossRef]

May, M. S.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

Meade, R. D.

Mendez, E. E.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Mihalache, D.

M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
[CrossRef]

Morozov, G. V.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630–638 (2006).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals,” Phys. Rev. E 69, 016612(2004).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals,” Phys. Rev. E 70, 016606 (2004).
[CrossRef]

Namdar, A.

A. Namdar, “Tamm states in one-dimensional photonic crystals containing left-handed materials,” Opt. Commun. 278, 194–198(2007).
[CrossRef]

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Ohno, H.

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Polo, J. A.

J. A. Polo, Jr. and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5, 234–246 (2011).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Dyakonov–Tamm waves guided by a twist defect in a structurally chiral material,” J. Opt. Soc. Am. A 26, 1615–1621 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, J. A. Polo, Jr., and M. Lei, “Errata,” J. Opt. Soc. Am. A 26, 2399 (2009).
[CrossRef]

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Pub. 2, 07021 (2007).
[CrossRef]

Rappe, A. M.

Rau, U.

Robertson, W. M.

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

W. M. Robertson, G. Arjavalingam, R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, “Observation of surface photons on periodic dielectric arrays,” Opt. Lett. 18, 528–533(1993).
[CrossRef]

Rockstuhl, C.

Shadrivov, I. V.

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

Shelykh, I.

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87, 261105 (2005).
[CrossRef]

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

Shiyanovskii, S. V.

S. V. Shiyanovskii, “Theory of surface electromagnetic waves in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 179, 133–138(1990).
[CrossRef]

Sprung, D. W. L.

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630–638 (2006).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals,” Phys. Rev. E 69, 016612(2004).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals,” Phys. Rev. E 70, 016606 (2004).
[CrossRef]

Starzhinskii, V. M.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Tamm, I.

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. A 76, 849–850 (1932).

Ulbrich, C.

Wendler, L.

R. Haupt and L. Wendler, “Dispersion and damping properties of plasmon polaritons in superlattice structures II. Semi-infinfinte superlattice,” Phys. Status Solidi B 142, 423–435 (1987).
[CrossRef]

Yakubovich, V. A.

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

Yariv, A.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Zourob, M.

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

Phys. Usp. (1)

V. N. Datsko and A. A. Kopylov, “On surface electromagnetic waves,” Phys. Usp. 51, 101–102 (2008).

Adv. Opt. Photon. (1)

Anal. Chem. (1)

V. N. Konopsky and E. V. Alieva, “Photonic crystal surface waves for optical biosensors,” Anal. Chem. 79, 4729–4735 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

A. Kavokin, I. Shelykh, and G. Malpuech, “Optical Tamm states for the fabrication of polariton lasers,” Appl. Phys. Lett. 87, 261105 (2005).
[CrossRef]

W. M. Robertson and M. S. May, “Surface electromagnetic wave excitation on one-dimensional photonic band-gap arrays,” Appl. Phys. Lett. 74, 1800–1802 (1999).
[CrossRef]

A. Namdar, I. V. Shadrivov, and Y. S. Kivshar, “Backward Tamm states in left-handed metamaterials,” Appl. Phys. Lett. 89, 114104 (2006).
[CrossRef]

P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978).
[CrossRef]

Electromagnetics (1)

I. Abdulhalim, M. Zourob, and A. Lakhtakia, “Surface plasmon resonance for biosensing: a mini-review,” Electromagnetics 28, 214–242 (2008).
[CrossRef]

J. Eur. Opt. Soc. Rapid Pub. (1)

A. Lakhtakia and J. A. Polo, Jr., “Dyakonov–Tamm wave at the planar interface of a chiral sculptured thin film and an isotropic dielectric material,” J. Eur. Opt. Soc. Rapid Pub. 2, 07021 (2007).
[CrossRef]

J. Nanophoton. (3)

M. Faryad and A. Lakhtakia, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part IV: canonical problem,” J. Nanophoton. 4, 043505 (2010).
[CrossRef]

A. Lakhtakia, Y.-J. Jen, and C.-F. Lin, “Multiple trains of same-color surface plasmon-polaritons guided by the planar interface of a metal and a sculptured nematic thin film. Part III: experimental evidence,” J. Nanophoton. 3, 033506 (2009).
[CrossRef]

J. Gao, A. Lakhtakia, and M. Lei, “Synoptic view of Dyakonov–Tamm waves localized to the planar interface of two chiral sculptured thin films,” J. Nanophoton. 5, 051502 (2011).
[CrossRef]

J. Opt. A (1)

J. Martorell, D. W. L. Sprung, and G. V. Morozov, “Surface TE waves on 1D photonic crystals,” J. Opt. A 8, 630–638 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

Laser Photonics Rev. (1)

J. A. Polo, Jr. and A. Lakhtakia, “Surface electromagnetic waves: a review,” Laser Photonics Rev. 5, 234–246 (2011).
[CrossRef]

Mol. Cryst. Liq. Cryst. (1)

S. V. Shiyanovskii, “Theory of surface electromagnetic waves in cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. 179, 133–138(1990).
[CrossRef]

Opt. Commun. (3)

M. Ciumac, D.-M. Baboiu, and D. Mihalache, “Hybrid surface modes in periodic stratified media: transfer matrix technique,” Opt. Commun. 111, 548–555 (1994).
[CrossRef]

A. Namdar, “Tamm states in one-dimensional photonic crystals containing left-handed materials,” Opt. Commun. 278, 194–198(2007).
[CrossRef]

M. Faryad and A. Lakhtakia, “Dyakonov–Tamm waves guided by a phase-twist combination defect in a sculptured nematic thin film,” Opt. Commun. 284, 160–168 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

J. Gao, A. Lakhtakia, and M. Lei, “Simultaneous propagation of two Dyakonov–Tamm waves guided by the planar interface created in a chiral sculptured thin film by a sudden change of vapor flux direction,” Phys. Lett. A 374, 3370–3372(2010).
[CrossRef]

Phys. Rev. A (1)

J. Gao, A. Lakhtakia, and M. Lei, “Dyakonov–Tamm waves guided by the interface between two structurally chiral materials that differ only in handedness,” Phys. Rev. A 81, 013801(2010).
[CrossRef]

Phys. Rev. B (1)

A. Kavokin, I. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005).
[CrossRef]

Phys. Rev. E (2)

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled-wave theory and its application to TE waves in one-dimensional photonic crystals,” Phys. Rev. E 69, 016612(2004).
[CrossRef]

G. V. Morozov, D. W. L. Sprung, and J. Martorell, “Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals,” Phys. Rev. E 70, 016606 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

H. Ohno, E. E. Mendez, J. A. Brum, J. M. Hong, F. Agulló-Rueda, L. L. Chang, and L. Esaki, “Observation of Tamm states in superlattices,” Phys. Rev. Lett. 64, 2555–2558 (1990).
[CrossRef]

Phys. Status Solidi B (1)

R. Haupt and L. Wendler, “Dispersion and damping properties of plasmon polaritons in superlattice structures II. Semi-infinfinte superlattice,” Phys. Status Solidi B 142, 423–435 (1987).
[CrossRef]

Prog. Quantum Electron. (1)

M. Dragoman and D. Dragoman, “Plasmonics: applications to nanoscale terahertz and optical devices,” Prog. Quantum Electron. 32, 1–41 (2008).
[CrossRef]

Z. Phys. A (1)

I. Tamm, “Über eine mögliche Art der Elektronenbindung an Kristalloberflächen,” Z. Phys. A 76, 849–850 (1932).

Other (4)

P. W. Baumeister, Optical Coating Technology (SPIE Press, 2004), Sec. 5.3.3.2.

Y. Jaluria, Computer Methods for Engineering (Taylor & Francis, 1996).

V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients (Wiley, 1975).

J.Homola, ed., Surface Plasmon Resonance Based Sensors (Springer, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics