Abstract

A digital feedback control loop system is used to produce high-efficiency photorefractive gratings in reflection geometry for volume narrow band reflection filters. The system allowed hologram recording up to saturation. Several strategies are investigated to obtain higher fixed efficiency. A double controlled recording/fixing process with stationary fringes produced holograms with fixed efficiency higher than 90%. This method is interesting for producing reproducible high-reflectivity narrow band reflection filters of customized wavelength in the visible and near-infrared regions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
    [CrossRef]
  2. R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
    [CrossRef]
  3. V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
    [CrossRef]
  4. J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003).
    [CrossRef]
  5. K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
    [CrossRef]
  6. M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.
  7. B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
    [CrossRef]
  8. I. Nee, O. Beyer, M. Muller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593–1602 (2003).
    [CrossRef]
  9. Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
    [CrossRef]
  10. D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
    [CrossRef]
  11. G. Barbastathis, M. Balberg, and D. J. Brady, “Confocal microscopy with a volume holographic filter,” Opt. Lett. 24, 811–813(1999).
    [CrossRef]
  12. L. Cao and C. Gu, “Matched spectral filter based on reflection holograms for analyte identification,” Appl. Opt. 48, 6973–6979(2009).
    [CrossRef] [PubMed]
  13. J. Frejlich, Photorefractive materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).
    [PubMed]
  14. J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
    [CrossRef]
  15. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
    [CrossRef]
  16. J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
    [CrossRef] [PubMed]
  17. J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
    [CrossRef] [PubMed]
  18. M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20, 1643–1648(2003).
    [CrossRef]
  19. M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
    [CrossRef]
  20. I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
    [CrossRef]
  21. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).
  22. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
    [CrossRef]
  23. R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
    [CrossRef]
  24. D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
    [CrossRef]
  25. A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
    [CrossRef] [PubMed]
  26. R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008).
    [CrossRef]
  27. M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–263 (1998).
    [CrossRef]
  28. E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
    [CrossRef]

2009 (1)

2008 (2)

J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
[CrossRef] [PubMed]

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008).
[CrossRef]

2007 (2)

2006 (1)

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

2005 (1)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

2004 (2)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[CrossRef]

2003 (4)

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003).
[CrossRef]

I. Nee, O. Beyer, M. Muller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593–1602 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20, 1643–1648(2003).
[CrossRef]

M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
[CrossRef]

2002 (1)

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

2001 (1)

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

2000 (1)

1999 (1)

1998 (3)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–263 (1998).
[CrossRef]

1995 (1)

1994 (2)

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
[CrossRef]

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

1992 (1)

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Adibi, A.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Agulló-López, F.

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–263 (1998).
[CrossRef]

Allen, A. S.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Arizmendi, L.

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef] [PubMed]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[CrossRef]

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.

Balberg, M.

Barbastathis, G.

Basun, S. A.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Beyer, O.

Brady, D. J.

Breuer, S.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

Brunken, S.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

Bunning, T. J.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Buse, K.

M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
[CrossRef]

I. Nee, O. Beyer, M. Muller, and K. Buse, “Multichannel wavelength-division multiplexing with thermally fixed Bragg gratings in photorefractive lithium niobate crystals,” J. Opt. Soc. Am. B 20, 1593–1602 (2003).
[CrossRef]

M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20, 1643–1648(2003).
[CrossRef]

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Cabrera, J. M.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.

Cao, L.

Carrascosa, M.

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef] [PubMed]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

E. M. de Miguel, J. Limeres, M. Carrascosa, and L. Arizmendi, “Study of developing thermal fixed holograms in lithium niobate,” J. Opt. Soc. Am. B 17, 1140–1146 (2000).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–263 (1998).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.

Cook, G.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Das, B. K.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

de Miguel, E. M.

de Oliveira, I.

J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
[CrossRef] [PubMed]

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef] [PubMed]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Evans, D. R.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Frejlich, J.

J. P. von Bassewitz, I. de Oliveira, and J. Frejlich, “Self-stabilized recording of fixed gratings at high temperature in LiNbO3:Fe,” Appl. Opt. 47, 5315–5320 (2008).
[CrossRef] [PubMed]

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008).
[CrossRef]

J. Frejlich, I. de Oliveira, L. Arizmendi, and M. Carrascosa, “Fixed holograms in iron-doped lithium niobate: simultaneous self-stabilized recording and compensation,” Appl. Opt. 46, 227–233 (2007).
[CrossRef] [PubMed]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef] [PubMed]

J. Frejlich, Photorefractive materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).
[PubMed]

Freschi, A. A.

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008).
[CrossRef]

A. A. Freschi and J. Frejlich, “Adjustable phase control in stabilized interferometry,” Opt. Lett. 20, 635–637 (1995).
[CrossRef] [PubMed]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Gorkunov, M.

M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
[CrossRef]

Gu, C.

Guha, S.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Hartwig, U.

Hatano, H.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Huignard, J.-P.

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.

Hukriede, J.

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kip, D.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

Kitamura, K.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

Krätzig, E.

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Leyva, V.

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

Limeres, J.

Liu, Y.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Luennemann, M.

M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
[CrossRef]

M. Luennemann, U. Hartwig, and K. Buse, “Improvements of sensitivity and refractive-index changes in photorefractive iron doped lithium niobate crystals by application of extremely large external electric fields,” J. Opt. Soc. Am. B 20, 1643–1648(2003).
[CrossRef]

Montenegro, R.

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008).
[CrossRef]

Muller, M.

Müller, R.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

Nakamura, M.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Nee, I.

O’Conner, B.

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

Pottenger, T. P.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Psaltis, D.

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Rakuljic, G. A.

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

Rauber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Runde, D.

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003).
[CrossRef]

Saleh, M. A.

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

Santos, M. T.

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
[CrossRef]

Sohler, W.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

Sturman, B.

M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
[CrossRef]

Suche, H.

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

Takekawa, S.

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

von Bassewitz, J. P.

Appl. Opt. (3)

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Rauber, “Photorefractive centers in LiNbO3 studied by optical-, Mo¨ssbauer-, and EPR-methods,” Appl. Phys. 12, 355–368 (1977).
[CrossRef]

Appl. Phys. B (4)

M. Gorkunov, B. Sturman, M. Luennemann, and K. Buse, “Feedback-controlled two-wave coupling in reflection geometry: application to lithium niobate crystals subjected to extremely high external electric fields,” Appl. Phys. B 77, 43–48(2003).
[CrossRef]

J. Hukriede, D. Kip, and E. Krätzig, “Thermal fixing of holographic gratings in planar LiNbO3:Ti:Fe waveguides,” Appl. Phys. B 66, 333–338 (1998).
[CrossRef]

D. Runde, S. Brunken, S. Breuer, and D. Kip, “Integrated-optical add/drop multiplexer for DWDM in lithium niobate,” Appl. Phys. B 88, 83–88 (2007).
[CrossRef]

B. K. Das, H. Suche, and W. Sohler, “Single-frequency Ti:Er:LiNbO3 distributed Bragg reflector waveguide laser with thermally fixed photorefractive cavity,” Appl. Phys. B 73, 439–442 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

V. Leyva, G. A. Rakuljic, and B. O’Conner, “Narrow bandwidth volume holographic optical filter operating at the Kr transition at 1547.82 nm,” Appl. Phys. Lett. 65, 1079–1082 (1994).
[CrossRef]

R. Müller, L. Arizmendi, M. Carrascosa, and J. M. Cabrera, “Determination of H concentration in LiNbO3 by photorefractive fixing,” Appl. Phys. Lett. 60, 3212–3215 (1992).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2947 (1969).

IEEE J. Quantum Electron. (1)

D. R. Evans, S. A. Basun, M. A. Saleh, A. S. Allen, T. P. Pottenger, G. Cook, T. J. Bunning, and S. Guha, “Elimination of photorefractive grating writing instabilities in iron-doped lithium niobate,” IEEE J. Quantum Electron. 38, 1661–1665 (2002).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

R. Montenegro, A. A. Freschi, and J. Frejlich, “Photorefractive two-wave mixing phase coupling measurement in a self-stabilized recording regime,” J. Opt. A: Pure Appl. Opt. 10, 104006 (2008).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys. (2)

R. Müller, M. T. Santos, L. Arizmendi, and J. M. Cabrera, “A narrow-band interference filter with photorefractive LiNbO3,” J. Phys. D: Appl. Phys. 27, 241–246 (1994).
[CrossRef]

J. Hukriede, D. Runde, and D. Kip, “Fabrication and application of holographic Bragg gratings in lithium niobate channel waveguides,” J. Phys. D: Appl. Phys. 36, R1–R16 (2003).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Liu, K. Kitamura, S. Takekawa, M. Nakamura, and H. Hatano, “Volume holographic filter at 1.55 μm in near-stoichiometric lithium niobate,” Jpn. J. Appl. Phys. 45, 6667–6669 (2006).
[CrossRef]

Nature (1)

K. Buse, A. Adibi, and D. Psaltis, “Non-volatile holographic storage in doubly doped lithium niobate crystals,” Nature 393, 665–668 (1998).
[CrossRef]

Opt. Commun. (3)

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Nearly 100% diffraction efficiency fixed holograms in oxidized iron-doped LiNbO3 crystals using self-stabilized recording technique,” Opt. Commun. 247, 39–48 (2005).
[CrossRef]

M. Carrascosa and F. Agulló-López, “Selective developing and screening of fixed photorefractive holograms,” Opt. Commun. 151, 257–263 (1998).
[CrossRef]

I. de Oliveira, J. Frejlich, L. Arizmendi, and M. Carrascosa, “Self-stabilized holographic recording in reduced and oxidized lithium niobate crystals,” Opt. Commun. 229, 371–380 (2004).
[CrossRef]

Opt. Lett. (2)

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004).
[CrossRef]

Other (2)

M. Carrascosa, L. Arizmendi, and J. M. Cabrera, “Thermal fixing of photoinduced gratings,” in Photorefractive Materials and Their Applications 1, P.Günter and J.-P. Huignard eds. (Springer, 2006), pp. 369–396.

J. Frejlich, Photorefractive materials: Fundamental Concepts, Holographic Recording, and Materials Characterization(Wiley, 2007).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup. M-PZT is the mirror mounted on a piezoelectric actuator and S is the sample located inside the vacuum chamber. The temperature controller has not been drawn.

Fig. 2
Fig. 2

Time evolution of first ( I Ω ) and second ( I 2 Ω ) harmonic amplitude signals during controlled recording of a hologram at room temperature. The second harmonic was used in this case as the control error signal.

Fig. 3
Fig. 3

(a) Solid line, measured angular variation around the Bragg angle of [ I 0 I T ( θ ) ] / I 0 , where I T ( θ ) is the transmitted beam intensity through the sample at each θ angle rotated from the Bragg position, and I 0 is the transmitted intensity for an angle for which there is no diffraction. Dashed line, angular dependence of diffraction efficiency given by Eq. (4) for the peak efficiency derived from the final value of I Ω in Fig. 2. (b) Same as (a) but after hologram fixing and developing.

Fig. 4
Fig. 4

(a) Angular variation around the Bragg angle of [ I 0 I T ( θ ) ] / I 0 for a hologram recorded using the control system with stationary fringes. Solid line, measured data; dashed line, calculated values. (b) Similar plot for the same hologram after fixing.

Fig. 5
Fig. 5

Angular variation around the Bragg angle of [ I 0 I T ( θ ) ] / I 0 for the fixed hologram obtained by a double fixing process after recording with stationary fringes.

Tables (1)

Tables Icon

Table 1 Summary of Peak Diffraction Values

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I S = I S 0 ( 1 η ) + I R 0 η + 2 ( I S 0 I R 0 ) 1 / 2 [ η ( 1 η ) ] 1 / 2 cos ( φ + ψ d sin Ω t ) ,
I S Ω = 4 J 1 ( ψ d ) ( I S 0 I R 0 ) 1 / 2 [ η ( 1 η ) ] 1 / 2 sin φ ,
I S 2 Ω = 4 J 2 ( ψ d ) ( I S 0 I R 0 ) 1 / 2 [ η ( 1 η ) ] 1 / 2 cos φ .
η = sh 2 { [ ( κ d ) 2 + ξ 2 ] 1 2 } sh 2 { [ ( κ d ) 2 + ξ 2 ] 1 2 } + [ 1 ξ 2 / ( κ d ) 2 ] ,
D r = { E ph 2 E q 2 + ( E D 2 + E ph 2 + E q E D ) 2 [ ( E q + E D ) 2 + E ph 2 ] 2 } 1 / 2 ,
E s = m 2 ( E ph + i E D ) E q E D + E q + i E ph .

Metrics