Abstract

We investigate the impact of germanium oxide (GeO2) doping on the linear and nonlinear properties of photonic crystal fibers. We propose some design rules allowing a strong enhancement of the Raman and Kerr nonlinearities with little impact on the fiber dispersive properties. It is experimentally and numerically demonstrated that using GeO2-doped core photonic crystal fibers allows a significant enhancement of the soliton self-frequency shift as compared to pure silica photonic crystal fibers with comparable dispersion. We found that the high nonlinear coefficient (due to a good mode confinement) obtained in the GeO2-doped core fiber plays a more important role on the soliton self-frequency shift enhancement than the intrinsic Raman gain.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).
  3. F. Mitschke and L. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
    [CrossRef] [PubMed]
  4. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  5. P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991).
    [CrossRef]
  6. J. Lucek and K. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
    [CrossRef] [PubMed]
  7. B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
    [CrossRef]
  8. K. Blow, N. Doran, and D. Wood, “Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation,” J. Opt. Soc. Am. B 5, 381–391 (1988).
    [CrossRef]
  9. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [CrossRef]
  10. The long-pulse pumping regime refers to cases in which the pump pulse duration ΔT is much longer than the MI oscillation period ΔTMI, given by ΔTMI=2π|β2|/(2γP), with β2 the second-order dispersion coefficient, γ the NL coefficient, and P the pump peak power. Cases in which ΔT is of the order of or less than ΔTMI correspond to the short-pulse pumping regime.
  11. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
    [CrossRef]
  12. J. M. Stone and J. C. Knight, “Visibly “white” light generation in uniform photonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008).
    [CrossRef] [PubMed]
  13. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
    [CrossRef]
  14. D. Mogilevtsev, T. Birks, and P. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664(1998).
    [CrossRef]
  15. J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
    [CrossRef]
  16. N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
    [CrossRef]
  17. J. Ranka, R. Windeler, and A. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
    [CrossRef]
  18. T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific, 1987).
  19. C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Telecommunication Systems (Academic, 2005).
  20. Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
    [CrossRef]
  21. Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009).
    [CrossRef] [PubMed]
  22. K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
    [CrossRef]
  23. V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
    [CrossRef] [PubMed]
  24. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Melin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
    [CrossRef] [PubMed]
  25. J. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
    [CrossRef]
  26. F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983).
    [CrossRef]
  27. J. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
    [CrossRef] [PubMed]
  28. N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
    [CrossRef]
  29. P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4.
    [PubMed]
  30. T. Nakashima, S. Seikai, and M. Nakazawa, “Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers,” Opt. Lett. 10, 420–422 (1985).
    [CrossRef] [PubMed]
  31. S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
    [CrossRef]
  32. T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
    [CrossRef]
  33. J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).
  34. T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive-index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995).
    [CrossRef] [PubMed]
  35. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
    [CrossRef]
  36. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Magi, R. Pant, and C. M. de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009).
    [CrossRef]
  37. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006).
    [CrossRef] [PubMed]
  38. F. Vanholsbeeck, S. Martin-Lopez, M. Gonzalez-Herraez, and S. Coen, “The role of pump incoherence in continuous-wave supercontinuum generation,” Opt. Express 13, 6615–6625 (2005).
    [CrossRef] [PubMed]
  39. B. Barviau, S. Randoux, and P. Suret, “Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber,” Opt. Lett. 31, 1696–1698(2006).
    [CrossRef] [PubMed]

2010

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

2009

2008

2007

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

2006

2005

2000

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

J. Ranka, R. Windeler, and A. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

1999

1998

1995

1992

J. Lucek and K. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef] [PubMed]

1991

P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991).
[CrossRef]

1989

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

1988

1987

B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

1986

1985

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

T. Nakashima, S. Seikai, and M. Nakazawa, “Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers,” Opt. Lett. 10, 420–422 (1985).
[CrossRef] [PubMed]

1984

1983

F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983).
[CrossRef]

1981

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

1978

J. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
[CrossRef]

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Telecommunication Systems (Academic, 2005).

Ainslie, B.

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

Antona, J.-C.

P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4.
[PubMed]

Arriaga, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Bang, O.

Bartelt, H.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Barviau, B.

Beaud, P.

B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Bennett, P.

Bigo, S.

P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4.
[PubMed]

Bigot, L.

Birks, T.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

D. Mogilevtsev, T. Birks, and P. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664(1998).
[CrossRef]

Bjarklev, A.

Blow, K.

Boling, N.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Bouwmans, G.

Broderick, N.

Chernikov, S.

P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991).
[CrossRef]

Coen, S.

Couderc, V.

V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Davey, S.

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

de Sterke, C. M.

Dianov, E.

P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991).
[CrossRef]

Dianov, E. M.

Dinda, P.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Doran, N.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
[CrossRef]

Eggleton, B. J.

Fleming, J.

J. Fleming, “Dispersion in GeO2–SiO2 glasses,” Appl. Opt. 23, 4486–4493 (1984).
[CrossRef] [PubMed]

J. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
[CrossRef]

Frosz, M. H.

Galeener, F.

F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983).
[CrossRef]

Gebhardt, A.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Glass, A.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Golovchenko, E. A.

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Gonzalez-Herraez, M.

Gorbach, A. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Gordon, J. P.

Grimm, S.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Hartung, A.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

Headley, C.

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Telecommunication Systems (Academic, 2005).

Hodel, W.

B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Izawa, T.

T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific, 1987).

Jamier, R.

Judge, A. C.

Kato, T.

Kirchhof, J.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Knight, J.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Knight, J. C.

Kobelke, J.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Kosolapov, A. F.

Kudlinski, A.

Kuhlmey, B. T.

Labruyere, A.

Lantz, E.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Le Rouge, A.

Leadbetter, A.

F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983).
[CrossRef]

Leproux, P.

V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Levchenko, A. E.

Lucek, J.

J. Lucek and K. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef] [PubMed]

Magi, E. C.

Maillotte, H.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Mamyshev, P.

P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991).
[CrossRef]

Martin-Lopez, S.

Melin, G.

Mitschke, F.

Mogilevtsev, D.

Mollenauer, L.

Monro, T.

Moubissi, A.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Mussot, A.

Nakashima, T.

Nakazawa, M.

Nishimura, M.

Nouchi, P.

P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4.
[PubMed]

Ortigosa-Blanch, A.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Owyoung, A.

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

Pant, R.

Pitois, S.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Prokhorov, A. M.

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Pryamikov, A. D.

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

Quiquempois, Y.

Randoux, S.

Ranka, J.

Reichel, V.

Richardson, D.

Rothwell, W.

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

Russell, P.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

D. Mogilevtsev, T. Birks, and P. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664(1998).
[CrossRef]

Schuster, K.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

V. Tombelaine, A. Labruyere, J. Kobelke, K. Schuster, V. Reichel, P. Leproux, V. Couderc, R. Jamier, and H. Bartelt, “Nonlinear photonic crystal fiber with a structured multi-component glass core for four-wave mixing and supercontinuum generation,” Opt. Express 17, 15392–15401 (2009).
[CrossRef] [PubMed]

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Schwuchow, A.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Seikai, S.

T. Nakashima, S. Seikai, and M. Nakazawa, “Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers,” Opt. Lett. 10, 420–422 (1985).
[CrossRef] [PubMed]

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Semjonov, S. L.

Serkin, V. N.

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Sillard, P.

P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4.
[PubMed]

Skryabin, D. V.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Spittel, R.

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

Stentz, A.

Stone, J. M.

Stringfellow, M.

F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983).
[CrossRef]

Sudo, S.

T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific, 1987).

Suetsugu, Y.

Suret, P.

Sylvestre, T.

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
[CrossRef]

Tombelaine, V.

Urbanczyk, W.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Vanholsbeeck, F.

Vanvincq, O.

Wadsworth, W.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

Wakefield, B.

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

Williams, D.

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

Windeler, R.

Wood, D.

Yatsenko, Y. P.

Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009).
[CrossRef] [PubMed]

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

Zysset, B.

B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Zysset, P. Beaud, and W. Hodel, “Generation of optical solitons in the wavelength region 1.37–1.49 μm,” Appl. Phys. Lett. 50, 1027–1029 (1987).
[CrossRef]

Electron. Lett.

J. Fleming, “Material dispersion in lightguide glasses,” Electron. Lett. 14, 326–328 (1978).
[CrossRef]

IEE Proc. J.

S. Davey, D. Williams, B. Ainslie, W. Rothwell, and B. Wakefield, “Optical gain spectrum of GeO2–SiO2 Raman fiber amplifiers,” IEE Proc. J. 136, 301–306 (1989).
[CrossRef]

IEEE J. Quantum Electron.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981).
[CrossRef]

N. Boling, A. Glass, and A. Owyoung, “Empirical relationships for predicting non-linear refractive-index changes in optical solids,” IEEE J. Quantum Electron. 14, 601–608 (1978).
[CrossRef]

P. Mamyshev, S. Chernikov, and E. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quantum Electron. 27, 2347–2355(1991).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Knight, J. Arriaga, T. Birks, A. Ortigosa-Blanch, W. Wadsworth, and P. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photon. Technol. Lett. 12, 807–809 (2000).
[CrossRef]

J. Opt. A

Y. P. Yatsenko and A. D. Pryamikov, “Parametric frequency conversion in photonic crystal fibres with germanosilicate core,” J. Opt. A 9, 716–722 (2007).
[CrossRef]

T. Sylvestre, P. Dinda, H. Maillotte, E. Lantz, A. Moubissi, and S. Pitois, “Wavelength conversion from 1.3 μm to 1.5 μm in single-mode optical fibres using Raman-assisted three-wave mixing,” J. Opt. A 2, 132–141 (2000).
[CrossRef]

J. Opt. Soc. Am. B

JETP Lett.

E. A. Golovchenko, E. M. Dianov, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).

Nat. Photon.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photon. 1, 653–657 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Melin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34, 3631–3633 (2009).
[CrossRef] [PubMed]

Y. P. Yatsenko, A. F. Kosolapov, A. E. Levchenko, S. L. Semjonov, and E. M. Dianov, “Broadband wavelength conversion in a germanosilicate-core photonic crystal fiber,” Opt. Lett. 34, 2581–2583 (2009).
[CrossRef] [PubMed]

B. Barviau, S. Randoux, and P. Suret, “Spectral broadening of a multimode continuous-wave optical field propagating in the normal dispersion regime of a fiber,” Opt. Lett. 31, 1696–1698(2006).
[CrossRef] [PubMed]

T. Nakashima, S. Seikai, and M. Nakazawa, “Dependence of Raman gain on relative index difference for GeO2-doped single-mode fibers,” Opt. Lett. 10, 420–422 (1985).
[CrossRef] [PubMed]

T. Kato, Y. Suetsugu, and M. Nishimura, “Estimation of nonlinear refractive-index in various silica-based glasses for optical fibers,” Opt. Lett. 20, 2279–2281 (1995).
[CrossRef] [PubMed]

D. Mogilevtsev, T. Birks, and P. Russell, “Group-velocity dispersion in photonic crystal fibers,” Opt. Lett. 23, 1662–1664(1998).
[CrossRef]

N. Broderick, T. Monro, P. Bennett, and D. Richardson, “Nonlinearity in holey optical fibers: measurement and future opportunities,” Opt. Lett. 24, 1395–1397 (1999).
[CrossRef]

J. Ranka, R. Windeler, and A. Stentz, “Optical properties of high-delta air-silica microstructure optical fibers,” Opt. Lett. 25, 796–798 (2000).
[CrossRef]

F. Mitschke and L. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986).
[CrossRef] [PubMed]

J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
[CrossRef] [PubMed]

Opt. Quantum Electron.

K. Schuster, J. Kobelke, S. Grimm, A. Schwuchow, J. Kirchhof, H. Bartelt, A. Gebhardt, P. Leproux, V. Couderc, and W. Urbanczyk, “Microstructured fibers with highly nonlinear materials,” Opt. Quantum Electron. 39, 1057–1069 (2007).
[CrossRef]

Phys. Rev. A

J. Lucek and K. Blow, “Soliton self-frequency shift in telecommunications fiber,” Phys. Rev. A 45, 6666–6674 (1992).
[CrossRef] [PubMed]

Phys. Rev. B

F. Galeener, A. Leadbetter, and M. Stringfellow, “Comparison of the neutron, Raman, and infrared vibrational-spectra of vitreous SiO2, GeO2, and BeF2,” Phys. Rev. B 27, 1052–1078 (1983).
[CrossRef]

Proc. SPIE

J. Kobelke, K. Schuster, R. Spittel, A. Hartung, A. Schwuchow, J. Kirchhof, and H. Bartelt, “Dispersion tailored microstructured fibers—core dopant effects,” Proc. SPIE 7714, 771–416(2010).

Rev. Mod. Phys.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[CrossRef]

Other

The long-pulse pumping regime refers to cases in which the pump pulse duration ΔT is much longer than the MI oscillation period ΔTMI, given by ΔTMI=2π|β2|/(2γP), with β2 the second-order dispersion coefficient, γ the NL coefficient, and P the pump peak power. Cases in which ΔT is of the order of or less than ΔTMI correspond to the short-pulse pumping regime.

T. Izawa and S. Sudo, Optical Fibers: Materials and Fabrication (KTK Scientific, 1987).

C. Headley and G. P. Agrawal, Raman Amplification in Fiber Optical Telecommunication Systems (Academic, 2005).

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010), Chap. 8.
[CrossRef]

P. Sillard, P. Nouchi, J.-C. Antona, and S. Bigo, “Modeling the non-linear index of optical fibers,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, Technical Digest (CD) (Optical Society of America, 2005), paper OFH4.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Material GVD curve calculated from [27] for a pure silica glass (dashed curve), and GeO 2 mole concentrations of 10 and 20 mol . % (dotted and solid curves, respectively).

Fig. 2
Fig. 2

NL index n 2 of bulk GeO 2 -doped glasses versus GeO 2 mole fraction.

Fig. 3
Fig. 3

(a) Raman gain spectra g R of pure silica glass (dashed curve), and GeO 2 -doped silica glasses with a mole fraction of 10 and 20 mol . % (dotted and solid curves, respectively), for a pump wavelength of 1064 nm . Inset : close-up on the low detuning region. (b), (c) Evolution of the maximum Raman gain g R (b) and fractional contribution f R (c) as a function of GeO 2 doping content for a 1064 nm pumping. Note that plots (b) and (c) can only be done for doping contents 3 mol . % according to the model of [32].

Fig. 4
Fig. 4

(a) Scheme representing the PCF structure, with the GeO 2 -doped area depicted in red color. (b)–(d) Quarter section of the pure silica (b) and GeO 2 -doped core PCFs with a GeO 2 content of 10 (c) and 20 mol . % (d). The colored scale represents the fundamental mode distribution at 1064 nm in logarithmic scale.

Fig. 5
Fig. 5

GVD curves calculated for a pure silica-core PCF (dashed curve), and two PCFs with GeO 2 doping levels of 10 mol . % (dotted curve) and 20 mol . % (solid curve).

Fig. 6
Fig. 6

NL coefficient curves calculated for a pure silica-core PCF (dashed curve), and two PCFs with GeO 2 doping levels of 10 mol . % (dotted curve) and 20 mol . % (solid curve).

Fig. 7
Fig. 7

NL coefficient calculated at 1064 nm as a function of the diameter of the GeO 2 -doped region d GeO 2 relative to the pitch Λ for two PCFs with GeO 2 doping levels of 10 mol . % (dotted curve) and 20 mol . % (solid curve). The d / Λ ratio was fixed to 0.6 and 0.815 for the 10 and 20 mol . % doping levels, respectively, and the pitch was adjusted so that all PCF designs exhibit the same ZDW of 1060 ± 1 nm . Lines are guides for the eye.

Fig. 8
Fig. 8

(a) SEM image of the fabricated pure silica PCF and (b) of the GeO 2 -doped core PCF with a maximum content of 20 mol . % at the center. Both images are at the same scale. (c) Radial evolution of the GeO 2 mole fraction measured in the preform used to form the core of the GeO 2 -doped PCF.

Fig. 9
Fig. 9

(a) Calculated GVD curves for the pure silica PCF (dashed curve) and GeO 2 -doped core PCF (solid curve). Markers depict the corresponding GVD measurements performed with a low-coherence interferometry setup. (b) Calculated spectral evolution of the NL coefficient γ in the pure silica PCF (dashed curve) and GeO 2 -doped core PCF (solid curve).

Fig. 10
Fig. 10

(a), (c) Experimental measurement of the soliton evolution as a function of length normalized to the pump peak power in the pure silica PCF (a) and in the GeO 2 -doped core PCF (c). (b), (d) Corresponding numerical simulations with the GNLSE by taking into account all available experimental conditions in the pure silica PCF (b) and in the GeO 2 -doped core PCF (d).

Fig. 11
Fig. 11

Numerical simulation of the frequency shift from the pump versus fiber length normalized to the pump power in the pure silica PCF (dashed curve) and in the GeO 2 -doped core PCF (solid curve).

Fig. 12
Fig. 12

Simulated spectrum after 4.3 m propagation in the four cases listed in Table 2. The vertical dashed line depicts the wavelength where the soliton was initially injected.

Fig. 13
Fig. 13

Spectra resulting from each single simulation shot (gray curves) and obtained from an averaging over five simulation shots (black curves) (a) in the pure silica PCF and (b) in the GeO 2 -doped core PCF. See Section 4 for details about the simulation parameters.

Tables (2)

Tables Icon

Table 1 Summary of the Optogeometrical Properties of the Three Designed PCFs

Tables Icon

Table 2 Frequency Shifts of Redshifted Solitons from the Pump at 1308 nm in Each of the Four Investigated Cases a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) ( ω ) = [ χ SiO 2 ( 3 ) ( ω ) ( 1 x ) + χ GeO 2 ( 3 ) ( ω ) ( x 0.03 ) ] / 0.97 ,
g R ( ω ) [ χ ( 3 ) ( ω ) ] × ω P ,
γ = 2 π n ¯ 2 λ A eff .
n ¯ 2 = + n 2 ( x , y ) I 2 ( x , y ) d x d y + I 2 ( x , y ) d x d y ,
T 0 = 2 | β 2 | π 2 γ P CW ,
Ψ ( z , t ) z = m 2 i m + 1 β m m ! m Ψ ( z , t ) t m 1 2 m = 0 ( i m α m m ! m t m ) Ψ ( z , t ) + m = 0 ( i m + 1 γ m m ! m t m ) [ Ψ ( z , t ) R ( t ) | Ψ ( z , t t ) | 2 d t ]
f R · h R ( t ) = 2 n 2 π 0 [ χ ( 3 ) ( ω ) ] × sin ( ω t ) d ω ,
0 h R ( t ) d t = 1.

Metrics