Abstract

We report experiments on random lasers based on films of poly(methyl methacrylate) containing rhodamine 6G and silver nanoparticles (NPs). The films were deposited on an aluminum-coated substrate that provides reinjection of leaking photons. The results show strong dependence of the emission on the silver NPs’ density and smaller linewidth and threshold due to the feedback provided by the aluminum film. For comparison purposes, samples with TiO2 NPs were also prepared, and no evidence of random lasers was obtained for the same experimental conditions. This demonstrates that higher optical gain for lasing is obtained using silver NPs mainly due to the contribution of localized surface plasmons in the NPs.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Zh. Éksp. Teor. Fiz. 53, 1442–1447 (1967).
  2. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).
  3. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [CrossRef]
  4. D. S. Wiersma, “Physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008).
    [CrossRef]
  5. M. A. Noginov, Solid State Random Lasers (Springer, 2005).
  6. G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
    [CrossRef]
  7. O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
    [CrossRef]
  8. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
    [CrossRef]
  9. X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
    [CrossRef]
  10. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [CrossRef]
  11. X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010).
    [CrossRef] [PubMed]
  12. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
    [CrossRef] [PubMed]
  13. A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
    [CrossRef]
  14. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
    [CrossRef]
  15. J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
    [CrossRef] [PubMed]
  16. R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35, 640–643 (1996).
    [CrossRef] [PubMed]
  17. P. C. de Oliveira, J. A. McGreevy, and N. M. Lawandy, “External feedback effects in high gain scattering media,” Opt. Lett. 22, 895–897 (1997).
    [CrossRef] [PubMed]
  18. P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
    [CrossRef]
  19. A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
    [CrossRef]
  20. W. C. Bell and M. L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes,” J. Colloid Interface Sci. 242, 300–305 (2001).
    [CrossRef]
  21. H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).
  22. S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
    [CrossRef]
  23. H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
    [CrossRef]
  24. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
    [CrossRef] [PubMed]
  25. Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photon. Rev. 3, 221–233 (2009).
    [CrossRef]
  26. T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
    [CrossRef]
  27. O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
    [CrossRef]
  28. F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
    [CrossRef]
  29. A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
    [CrossRef] [PubMed]
  30. C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27, 1204–1211 (2005).
    [CrossRef]
  31. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanomaterials,” Plasmonics 3, 127–150 (2008).
    [CrossRef]
  32. C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
    [CrossRef]

2010 (3)

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010).
[CrossRef] [PubMed]

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[CrossRef]

2009 (2)

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photon. Rev. 3, 221–233 (2009).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

2008 (6)

D. S. Wiersma, “Physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008).
[CrossRef]

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanomaterials,” Plasmonics 3, 127–150 (2008).
[CrossRef]

C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
[CrossRef]

2007 (1)

T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
[CrossRef]

2006 (3)

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

2005 (2)

G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27, 1204–1211 (2005).
[CrossRef]

2003 (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

2002 (1)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

2001 (3)

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

W. C. Bell and M. L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes,” J. Colloid Interface Sci. 242, 300–305 (2001).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
[CrossRef] [PubMed]

1999 (2)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

1997 (1)

1996 (1)

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

1982 (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

1967 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Zh. Éksp. Teor. Fiz. 53, 1442–1447 (1967).

Arbeloa, F. L.

C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
[CrossRef]

Balachandran, R. M.

R. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, “Laser action in polymeric gain media containing scattering particles,” Appl. Opt. 35, 640–643 (1996).
[CrossRef] [PubMed]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Bell, W. C.

W. C. Bell and M. L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes,” J. Colloid Interface Sci. 242, 300–305 (2001).
[CrossRef]

Brito-Silva, A. M.

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[CrossRef]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Burin, A. L.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Cao, H.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Chang, R. P. H.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

Davidov, D.

O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

de Araújo, C. B.

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[CrossRef]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

de Lima, E.

C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
[CrossRef]

de Oliveira, P. C.

C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
[CrossRef]

P. C. de Oliveira, J. A. McGreevy, and N. M. Lawandy, “External feedback effects in high gain scattering media,” Opt. Lett. 22, 895–897 (1997).
[CrossRef] [PubMed]

Deshpande, A. C.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
[CrossRef]

Dice, G. D.

G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Dominguez, C. T.

C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
[CrossRef]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Elezzabi, A. Y.

G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Fu, Y.

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photon. Rev. 3, 221–233 (2009).
[CrossRef]

Fujita, K.

X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Galembeck, A.

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[CrossRef]

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Ge, L.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Geddes, C. D.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Gerritsen, H. C.

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Gomes, A. S. L.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Gómez, L. A.

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[CrossRef]

Graf, Ch.

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Ho, S. T.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Jesus-Silva, A. J.

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

Kalele, S.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
[CrossRef]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Konishi, J.

Kulkarni, S. K.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
[CrossRef]

Lakowicz, J. R.

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photon. Rev. 3, 221–233 (2009).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
[CrossRef] [PubMed]

Lawandy, N. M.

Lee, P. C.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Zh. Éksp. Teor. Fiz. 53, 1442–1447 (1967).

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Liu, X.

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Mano, M.

McGreevy, J. A.

Meisel, D.

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

Meng, X.

X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Moller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Mujumdamar, S.

G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

Murai, S.

X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Myrick, M. L.

W. C. Bell and M. L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes,” J. Colloid Interface Sci. 242, 300–305 (2001).
[CrossRef]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, Solid State Random Lasers (Springer, 2005).

Noguez, C.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanomaterials,” Plasmonics 3, 127–150 (2008).
[CrossRef]

C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27, 1204–1211 (2005).
[CrossRef]

Pacheco, D. P.

Patra, A.

T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
[CrossRef]

Pinheiro, F. A.

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

Popov, O.

O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

Ratner, M. A.

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Rotter, S.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Sadhu, S.

T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
[CrossRef]

Sampaio, L. C.

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Seelig, E. W.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Seelig, W.

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

Sen, T.

T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
[CrossRef]

Singh, S. B.

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
[CrossRef]

Stone, A. D.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Tanaka, K.

X. Meng, K. Fujita, S. Murai, J. Konishi, M. Mano, and K. Tanaka, “Random lasing in ballistic and diffusive-regimes for macroporous silica-based systems with tunable scattering strength,” Opt. Express 18, 12153–12160 (2010).
[CrossRef] [PubMed]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Tovmachenko, O. G.

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

Türeci, H. E.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

van Blaaderen, A.

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).

van den Heuvel, D. J.

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Wiersma, D. S.

D. S. Wiersma, “Physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008).
[CrossRef]

Zhang, J. Z.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanomaterials,” Plasmonics 3, 127–150 (2008).
[CrossRef]

Zhao, Y. G.

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

Zibershtein, A.

O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

Zong, Y.

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

Adv. Mater. (1)

O. G. Tovmachenko, Ch. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18, 91–95(2006).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering: biophysical and biomedical applications,” Anal. Biochem. 298, 1–24 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (5)

G. D. Dice, S. Mujumdamar, and A. Y. Elezzabi, “Plasmonically enhanced diffusive and subdiffusive metal nanoparticle-dye random laser,” Appl. Phys. Lett. 86, 131105 (2005).
[CrossRef]

O. Popov, A. Zibershtein, and D. Davidov, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89, 191116 (2006).
[CrossRef]

X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92, 201112 (2008).
[CrossRef]

H. Cao, Y. G. Zhao, X. Liu, W. Seelig, and R. P. H. Chang, “Effect of external feedback on lasing in random media,” Appl. Phys. Lett. 75, 1213 (1999).
[CrossRef]

T. Sen, S. Sadhu, and A. Patra, “Surface energy transfer from rhodamine 6G to gold nanoparticles: A spectroscopic ruler,” Appl. Phys. Lett. 91, 043104 (2007).
[CrossRef]

Bull. Mater. Sci. (1)

S. Kalele, A. C. Deshpande, S. B. Singh, and S. K. Kulkarni, “Tuning luminescence intensity of Rh6G dye using silver nanoparticles,” Bull. Mater. Sci. 31, 541–544 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

C. T. Dominguez, E. de Lima, P. C. de Oliveira, and F. L. Arbeloa, “Using random laser emission to investigate the bonding energy of laser dye dimers,” Chem. Phys. Lett. 464, 245–248 (2008).
[CrossRef]

J. Appl. Phys. (1)

A. M. Brito-Silva, A. Galembeck, A. S. L. Gomes, A. J. Jesus-Silva, and C. B. de Araújo, “Random laser action in dye solutions containing Stöber silica nanoparticles,” J. Appl. Phys. 108, 033508 (2010).
[CrossRef]

J. Colloid Interface Sci. (1)

W. C. Bell and M. L. Myrick, “Preparation and characterization of nanoscale silver colloids by two novel synthetic routes,” J. Colloid Interface Sci. 242, 300–305 (2001).
[CrossRef]

J. Nanomater. (1)

A. M. Brito-Silva, L. A. Gómez, C. B. de Araújo, and A. Galembeck, “Laser ablated silver nanoparticles with nearly the same size in different carrier media,” J. Nanomater. 2010, 142897 (2010).
[CrossRef]

J. Phys. Chem. (1)

P. C. Lee and D. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86, 3391–3395 (1982).
[CrossRef]

J. Phys. D (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D 36, R240–R249 (2003).
[CrossRef]

Laser Photon. Rev. (1)

Y. Fu and J. R. Lakowicz, “Modification of single molecule fluorescence near metallic nanostructures,” Laser Photon. Rev. 3, 221–233 (2009).
[CrossRef]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[CrossRef]

Nature Phys. (1)

D. S. Wiersma, “Physics and applications of random lasers,” Nature Phys. 4, 359–367 (2008).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

C. Noguez, “Optical properties of isolated and supported metal nanoparticles,” Opt. Mater. 27, 1204–1211 (2005).
[CrossRef]

Phys. Rev. A (2)

F. A. Pinheiro and L. C. Sampaio, “Lasing threshold of diffusive random lasers in three dimensions,” Phys. Rev. A 73, 013826 (2006).
[CrossRef]

X. Meng, K. Fujita, S. Murai, and K. Tanaka, “Coherent random lasers in weakly scattering polymer films containing silver nanoparticles,” Phys. Rev. A 79, 053817 (2009).
[CrossRef]

Phys. Rev. Lett. (3)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[CrossRef]

A. L. Burin, M. A. Ratner, H. Cao, and R. P. H. Chang, “Model for a random laser,” Phys. Rev. Lett. 87, 215503 (2001).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Plasmonics (1)

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanomaterials,” Plasmonics 3, 127–150 (2008).
[CrossRef]

Science (1)

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320, 643–646 (2008).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Sov. Phys. JETP 26, 835–840 (1968).

Zh.?Éksp. Teor. Fiz. (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” Zh. Éksp. Teor. Fiz. 53, 1442–1447 (1967).

Other (2)

M. A. Noginov, Solid State Random Lasers (Springer, 2005).

H. C. van de Hulst, Light Scattering by Small Particles(Dover, 1981).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a)–(c) TEM images taken from Ag NPs after two hours of laser ablation. The images demonstrate the tendency of the NPs to assume a spherical shape.

Fig. 2
Fig. 2

Normalized absorbance of samples in aqueous solution: Ag NPs, dashed line; Rh6G dye, solid line; the mixture Ag NPs + Rh 6 G , dotted line.

Fig. 3
Fig. 3

Emitted spectrum from two PMMA films containing the same NP density 2.9 × 10 12 cm 3 : TiO 2 NPs, solid line; Ag NPs, dashed line. Pumping energy fluence: 8.3 mJ / cm 2 . The sample containing TiO 2 NPs shows only a broad spectrum and low emission; on the other hand, the emission from the sample doped with Ag NPs displays a 270-fold enhancement and narrower linewidth than the sample with TiO 2 .

Fig. 4
Fig. 4

Dependence of the RL intensity on the detection angle presenting a maximum at 55 ° from the normal to the film surface. The energy fluence was 3.0 mJ / cm 2 . (Inset: sketch of the sample and the pumping and detection directions).

Fig. 5
Fig. 5

(a) RL linewidth as a function of the pumping fluence for several Ag NP densities: 1.5 × 10 11 , blue squares; 3.0 × 10 11 , red diamonds; 7.5 × 10 11 , purple down triangles; 1.5 × 10 12 , olive asterisks; 2.9 × 10 12 , royal blue circles; 5.8 × 10 12 , black stars; 1.3 × 10 13 , orange up triangles. (b) Minimum linewidth ( Δ λ min ) versus Ag NP density. Energy fluence: 8.3 mJ / cm 2 .

Fig. 6
Fig. 6

RL threshold as a function of Ag NP density (filled circles). The solid line is a fitting to the experimental results considering fluence threshold N b , where b = 0.33 .

Fig. 7
Fig. 7

Emission spectra obtained using single-shot detection for Ag NP density ranging between 1.5 × 10 12 and 1.3 × 10 13 cm 3 . The multiple peaks (spikes) are a signature of RL with coherent feedback. Pumping energy fluence: 2.4 mJ / cm 2 .

Fig. 8
Fig. 8

Influence of external feedback on the properties of RL emission: (a) fluence threshold reduced by a factor of 5; (b) emission enhanced by a factor of more than 20 and RL linewidth reduced from 9 to 6 nm . Inset in (b)  samples: with mirror, dashed line; without mirror, solid line. The pumping fluence was 7.5 mJ / cm 2 .

Tables (1)

Tables Icon

Table 1 Densities and Scattering Mean Free Path, l s , for Ag and TiO 2 NPs in PMMA Films after Solvent Evaporation, Calculated Using Mie Theory [21]

Metrics