Abstract

We propose an atomic filter configuration with large tunability based on selective optical-pumping-induced anisotropy. Theoretical simulation shows that the filter structure, by using a counterpropagating pump, can achieve higher transmission and a narrower passband than that using a copropagating pump due to the elimination of Doppler broadening. In addition, the filter’s tunability over 100 GHz via Aulter–Townes splitting and filtering characteristics is analyzed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
    [CrossRef]
  2. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
    [CrossRef]
  3. H. Chen, M. A. White, David A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
    [CrossRef] [PubMed]
  4. C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
    [CrossRef]
  5. J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890–892 (2005).
    [CrossRef] [PubMed]
  6. J. S. Neergaard-Nielsen, B. M. Nielsen, H. Takahashi, A. I. Vistnes, and E. S. Polzik, “High purity bright single photon source,” Opt. Express 15, 7940–7949 (2007).
    [CrossRef] [PubMed]
  7. X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
    [CrossRef] [PubMed]
  8. F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008).
    [CrossRef] [PubMed]
  9. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).
    [CrossRef] [PubMed]
  10. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical fitler,” Opt. Lett. 16, 867–869 (1991).
    [CrossRef] [PubMed]
  11. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
    [CrossRef] [PubMed]
  12. Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
    [CrossRef]
  13. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
    [CrossRef]
  14. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
    [CrossRef]
  15. L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
    [CrossRef]
  16. S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995).
    [CrossRef] [PubMed]
  17. L. D. Turner, V. Karagnanov, and P. J. O. Teubner, “Sub-Doppler bandwidth atomic atomic optical filter,” Opt. Lett. 27, 500–502(2002).
    [CrossRef]
  18. A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009).
    [CrossRef] [PubMed]
  19. Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
    [CrossRef]
  20. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982).
    [CrossRef] [PubMed]

2009 (2)

2008 (2)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

F. Wolfgramm, X. Xing, A. Cere, A. Predojevic, A. M. Steinberg, and M. W. Mitchell, “Bright filter-free source of indistinguishable photon pairs,” Opt. Express 16, 18145–18151 (2008).
[CrossRef] [PubMed]

2007 (1)

2005 (1)

2002 (2)

2001 (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

1998 (1)

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

1997 (1)

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
[CrossRef]

1996 (1)

1995 (3)

1991 (2)

1988 (1)

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
[CrossRef]

1982 (1)

Abad, M.

Allocca, D. M.

Alpers, M.

Bao, X.-H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Benson, K.

Billmers, R. I.

Bloom, S. H.

Cere, A.

Cerè, A.

Chen, H.

Chen, Z.-B.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Contarino, V. M.

Dick, D. J.

Duan, M.

Fricke-Begemann, C.

Gan, J.

Gayen, S. K.

Gelbwachs, J. A.

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
[CrossRef]

He, Z.

Herczfeld, P. R.

Höffner, J.

Jia, X.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

Karagnanov, V.

Kong, J.

Korevaar, E.

Krugger, David A.

Li, Y.

Liu, C. S.

Liu, S.

Ma, Z.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Menders, J.

Mitchell, M. W.

Neergaard-Nielsen, J. S.

Nielsen, B. M.

Pan, J.-W.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Parigi, V.

Peng, Y.

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
[CrossRef]

Polzik, E. S.

Predojevic, A.

Qian, Y.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Scharpf, W. J.

Shay, T. M.

She, C. Y.

Squicciarini, M. F.

Steinberg, A. M.

Takahashi, H.

Tang, J.

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

Teubner, P. J. O.

Turner, L. D.

Vistnes, A. I.

Wang, Q.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

White, M. A.

Wolfgramm, F.

Wu, H.

Xing, X.

Yang, G.

Yang, J.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Yang, T.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Yeh, P.

Yuan, P.

Zhang, H.

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Zhang, L.

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, and L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995).
[CrossRef]

Zhang, Y.

Z. He, Y. Zhang, H. Wu, P. Yuan, and S. Liu, “Theoretical model for an atomic optical filter based on optical anisotropy,” J. Opt. Soc. Am. B 26, 1755–1759 (2009).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

Zheng, L.

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

J. A. Gelbwachs, “Atomic resonance filters,” IEEE J. Quantum Electron. 24, 1266–1277 (1988).
[CrossRef]

IEEE. J. Quantum Electron. (1)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE. J. Quantum Electron. 37, 372–375 (2001).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

Y. Peng, “Transmission characteristics of an excited-state Faraday optical filter at 532 nm,” J. Phys. B 30, 5123–5129 (1997).
[CrossRef]

Opt. Commun. (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun. 194, 147–150(2001).
[CrossRef]

L. Zhang and J. Tang, “Experimental study on optimization of the working conditions of excited state Faraday filter,” Opt. Commun. 152, 275–279 (1998).
[CrossRef]

Opt. Express (2)

Opt. Lett. (9)

A. Cerè, V. Parigi, M. Abad, F. Wolfgramm, A. Predojević, and M. W. Mitchell, “Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor,” Opt. Lett. 34, 1012–1014 (2009).
[CrossRef] [PubMed]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991).
[CrossRef] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical fitler,” Opt. Lett. 16, 867–869 (1991).
[CrossRef] [PubMed]

L. D. Turner, V. Karagnanov, and P. J. O. Teubner, “Sub-Doppler bandwidth atomic atomic optical filter,” Opt. Lett. 27, 500–502(2002).
[CrossRef]

C. Fricke-Begemann, M. Alpers, and J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002).
[CrossRef]

J. Höffner and C. Fricke-Begemann, “Accurate lidar temperature with narrowband filters,” Opt. Lett. 30, 890–892 (2005).
[CrossRef] [PubMed]

R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, and D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995).
[CrossRef] [PubMed]

S. K. Gayen, R. I. Billmers, V. M. Contarino, M. F. Squicciarini, W. J. Scharpf, G. Yang, P. R. Herczfeld, and D. M. Allocca, “Induced-dichroism-excited atomic line filter at 532 nm,” Opt. Lett. 20, 1427–1429 (1995).
[CrossRef] [PubMed]

H. Chen, M. A. White, David A. Krugger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

X.-H. Bao, Y. Qian, J. Yang, H. Zhang, Z.-B. Chen, T. Yang, and J.-W. Pan, “Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories,” Phys. Rev. Lett. 101, 190501 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Related energy levels of Rb 87 .

Fig. 2
Fig. 2

Peak transmission (solid curve) and FWHM (dashed curve) as a function of the pump’s Rabi frequency when the pump is copropagating with the probe. The temperature is 380 K and the cell length is 7.5 cm .

Fig. 3
Fig. 3

Peak transmission (solid curve) and FWHM (dashed curve) as a function of the pump’s Rabi frequency when the pump is counterpropagating with the probe. Other parameters are the same as in Fig. 2.

Fig. 4
Fig. 4

(a) Absorption coefficient, (b) transmission as a function of the probe detuning. The pump beam is on resonance with 4 S 1 / 2 4 P 1 / 2 transition at I pump = 0.8 MW cm 2 ( Ω C = 91 GHz ) and T = 200 ° C .

Fig. 5
Fig. 5

Related K 39 energy levels under Aulter–Townes splitting.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

H = 2 [ 0 Ω c 0 Ω c * 2 Δ c Ω p 0 Ω p * 2 ( Δ c + Δ p ) ] .
ρ t = 1 i [ H , ρ ] 1 2 { Γ , ρ } .
ρ 32 = Ω p Ω c 2 [ 2 γ 21 ( Δ c + Δ p ) + γ 2 Δ c + i ( 2 γ 21 γ 31 + γ 2 γ 21 ) ] [ 4 ( γ 32 + i Δ p ) ( γ 31 + i ( Δ c + Δ p ) ) + Ω c 2 ] [ 2 γ 2 ( Δ c 2 + γ 21 2 ) + 2 γ 21 Ω c 2 ] .
χ = 2 μ 23 2 N 0 ρ 32 / ( ε 0 Ω p ) .
χ = 2 μ 2 2 N 0 π u ε 0 Ω p ρ 32 e v 2 / u 2 d v .
T r = 1 2 exp ( α L ) [ cosh ( Δ α L ) cos ( 2 ρ L ) ] .

Metrics