Abstract

Experimental slope efficiencies of 72% to 76% are achieved for a pulsed Rb-methane optically pumped alkali metal vapor laser with pump intensities up to 120kW/cm2. Measurements characterizing the temporal dynamics, spectral width, beam diameter, and M2 values of the 795nm laser beam are presented. M2 values indicate that the 795nm laser beam is 10 to 20 times diffraction limited. The laser system’s response to changes in the pump’s spectral width, the Rb number density, relaxant concentration, and pump intensity are examined with a broadband time-dependent one-dimensional rate equation model. The experimental data and the modeling results are shown to be in good agreement for a wide range of experimental conditions.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003).
    [CrossRef] [PubMed]
  2. J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
    [CrossRef]
  3. J. Zweiback and W. F. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525 (2008).
    [CrossRef]
  4. R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
    [CrossRef]
  5. T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
    [CrossRef]
  6. B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the Laser and Optics Research Center of the U.S. Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
    [CrossRef]
  7. C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
    [CrossRef]
  8. J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
    [CrossRef]
  9. G. D. Hager and G. P. Perram, “Extended saturation analysis and analytical model of diode pumped alkali lasers” Proc. SPIE 7581, 75810J (2010).
    [CrossRef]
  10. G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
    [CrossRef]
  11. C. D. Lewis, “A theoretical model analysis of the absorption of a three level diode pumped alkali laser,” Master’s thesis (Department of Engineering Physics, Graduate School of Engineering and Management, Air Force Institute of Technology, 2009), http://handle.dtic.mil/100.2/ADA495858.
  12. S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocardon-free resonance transition 795 nm rubidium laser,” Opt. Lett. 322423–2425. (2007).
    [CrossRef] [PubMed]
  13. G. A. Pitz and G. P. Perram, “Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers,” Proc. SPIE 7005, 700526 (2008).
    [CrossRef]
  14. M. D. Rotondaro and G. P. Perram, “Role of rotational-energy defect in collisional transfer between the 5P21/2,3/2 levels in rubidium,” Phys. Rev. A 57, 4045–4048 (1998).
    [CrossRef]
  15. N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
    [CrossRef]
  16. D. A. Steck, “Rubidium 85 D line data & rubidium 87 D line data,” http://steck.us/alkalidata.
  17. N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
    [CrossRef]
  18. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines ((5S21/2→5P21,2,5P23,2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
    [CrossRef]
  19. A. Gallagher, “Rubidium and cesium excitation transfer in nearly adiabatic collisions with inert gases,” Phys. Rev. 172, 88–96 (1968).
    [CrossRef]
  20. A. Siegman, Lasers (University Science, 1986).
  21. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
    [CrossRef]
  22. W. Koechner and M. Bass, Solid-State Lasers—A Graduate Text (Springer2003).
  23. W. P. Risk, “Modeling of longitudinally pumped solid-state lasers exhibiting reabsorption losses,” J. Opt. Soc. Am. B 5, 1412–1423(1988).
    [CrossRef]
  24. A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
    [CrossRef]
  25. M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D.R.Hall and P.E.Jackson, eds. (Institute of Physics, 1989), pp. 136–142.
  26. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall1995).
  27. R. J. Freiberg and A. S. Halsted, “Properties of low order transverse modes in argon ion lasers,” Appl. Opt. 8, 355–362 (1969).
    [CrossRef] [PubMed]
  28. W. H. Carter, “Spot size and divergence for Hermite Gaussian beams of any order,” Appl. Opt. 19, 1027–1029 (1980).
    [CrossRef] [PubMed]
  29. C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963).
    [CrossRef]
  30. J. P. Goldsborough, “Beat frequencies between modes of a concave-mirror optical resonator,” Appl. Opt. 3, 267–275 (1964).
    [CrossRef]
  31. U. P. Oppenheim and M. Natfaly, “Observation of mode pulling in a CO2 laser,” Appl. Opt. 23, 661–664 (1984).
    [CrossRef] [PubMed]
  32. A. E. Siegman, “Unstable laser resonators,” Appl. Opt. 13, 353–367 (1974).
    [CrossRef] [PubMed]

2011 (1)

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

2010 (4)

J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

G. D. Hager and G. P. Perram, “Extended saturation analysis and analytical model of diode pumped alkali lasers” Proc. SPIE 7581, 75810J (2010).
[CrossRef]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

2009 (2)

J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

2008 (3)

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the Laser and Optics Research Center of the U.S. Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[CrossRef]

G. A. Pitz and G. P. Perram, “Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers,” Proc. SPIE 7005, 700526 (2008).
[CrossRef]

J. Zweiback and W. F. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525 (2008).
[CrossRef]

2007 (2)

T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[CrossRef]

S. S. Q. Wu, T. F. Soules, R. H. Page, S. C. Mitchell, V. K. Kanz, and R. J. Beach, “Hydrocardon-free resonance transition 795 nm rubidium laser,” Opt. Lett. 322423–2425. (2007).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

1998 (1)

M. D. Rotondaro and G. P. Perram, “Role of rotational-energy defect in collisional transfer between the 5P21/2,3/2 levels in rubidium,” Phys. Rev. A 57, 4045–4048 (1998).
[CrossRef]

1997 (1)

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines ((5S21/2→5P21,2,5P23,2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

1993 (1)

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

1988 (1)

1984 (1)

1980 (1)

1974 (1)

1969 (1)

1968 (1)

A. Gallagher, “Rubidium and cesium excitation transfer in nearly adiabatic collisions with inert gases,” Phys. Rev. 172, 88–96 (1968).
[CrossRef]

1965 (1)

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

1964 (1)

1963 (1)

C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963).
[CrossRef]

Bass, M.

W. Koechner and M. Bass, Solid-State Lasers—A Graduate Text (Springer2003).

Beach, R. J.

Carter, W. H.

De Mars, G.

C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963).
[CrossRef]

Dubinskii, M. A.

Erickson, C. J.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

Freiberg, R. J.

Gallagher, A.

A. Gallagher, “Rubidium and cesium excitation transfer in nearly adiabatic collisions with inert gases,” Phys. Rev. 172, 88–96 (1968).
[CrossRef]

Goldsborough, J. P.

Hager, G. D.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

G. D. Hager and G. P. Perram, “Extended saturation analysis and analytical model of diode pumped alkali lasers” Proc. SPIE 7581, 75810J (2010).
[CrossRef]

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Halsted, A. S.

Hostutler, D. A.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[CrossRef]

Kanz, V. K.

Knize, R. J.

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the Laser and Optics Research Center of the U.S. Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[CrossRef]

Koechner, W.

W. Koechner and M. Bass, Solid-State Lasers—A Graduate Text (Springer2003).

Komashka, A.

J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[CrossRef]

Krupke, W. F.

J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[CrossRef]

J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

J. Zweiback and W. F. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525 (2008).
[CrossRef]

R. J. Beach, W. F. Krupke, V. K. Kanz, S. A. Payne, M. A. Dubinskii, and L. D. Merkle, “End-pumped continuous-wave alkali vapor lasers: experiment, model and power scaling,” J. Opt. Soc. Am. B 21, 2151–2163 (2004).
[CrossRef]

W. F. Krupke, R. J. Beach, V. K. Kanz, and S. A. Payne, “Resonance transition 795 nm rubidium laser,” Opt. Lett. 28, 2336–2338 (2003).
[CrossRef] [PubMed]

Lewis, C. D.

C. D. Lewis, “A theoretical model analysis of the absorption of a three level diode pumped alkali laser,” Master’s thesis (Department of Engineering Physics, Graduate School of Engineering and Management, Air Force Institute of Technology, 2009), http://handle.dtic.mil/100.2/ADA495858.

Merkle, L. D.

Mitchell, S. C.

Natfaly, M.

Oppenheim, U. P.

Page, R. H.

Payne, S. A.

Perram, G. P.

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

G. D. Hager and G. P. Perram, “Extended saturation analysis and analytical model of diode pumped alkali lasers” Proc. SPIE 7581, 75810J (2010).
[CrossRef]

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

G. A. Pitz and G. P. Perram, “Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers,” Proc. SPIE 7005, 700526 (2008).
[CrossRef]

M. D. Rotondaro and G. P. Perram, “Role of rotational-energy defect in collisional transfer between the 5P21/2,3/2 levels in rubidium,” Phys. Rev. A 57, 4045–4048 (1998).
[CrossRef]

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines ((5S21/2→5P21,2,5P23,2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

Perschbacher, T. A.

T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[CrossRef]

Pitz, G. A.

G. A. Pitz and G. P. Perram, “Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers,” Proc. SPIE 7005, 700526 (2008).
[CrossRef]

Rigrod, W. W.

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

Risk, W. P.

Rotondaro, M. D.

M. D. Rotondaro and G. P. Perram, “Role of rotational-energy defect in collisional transfer between the 5P21/2,3/2 levels in rubidium,” Phys. Rev. A 57, 4045–4048 (1998).
[CrossRef]

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines ((5S21/2→5P21,2,5P23,2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

Rudolph, W.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Sasnett, M. W.

M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D.R.Hall and P.E.Jackson, eds. (Institute of Physics, 1989), pp. 136–142.

Shay, T. M.

T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science, 1986).

Siegman, A. E.

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

A. E. Siegman, “Unstable laser resonators,” Appl. Opt. 13, 353–367 (1974).
[CrossRef] [PubMed]

Soules, T. F.

Statz, H.

C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963).
[CrossRef]

Steck, D. A.

D. A. Steck, “Rubidium 85 D line data & rubidium 87 D line data,” http://steck.us/alkalidata.

Sulham, C. V.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

Tang, C. L.

C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963).
[CrossRef]

Townsend, S. W.

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall1995).

Wilkinson, M. P.

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

Wu, S. S. Q.

Zameroski, N. D.

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

Zhdanov, B. V.

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the Laser and Optics Research Center of the U.S. Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[CrossRef]

Zweiback, J.

J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[CrossRef]

J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

J. Zweiback and W. F. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525 (2008).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (1)

G. D. Hager and G. P. Perram, “A three-level analytic model for alkali metal vapor lasers: part I. Narrowband optical pumping,” Appl. Phys. B 101, 45–56 (2010).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. E. Siegman and S. W. Townsend, “Output beam propagation and beam quality from a multimode stable-cavity laser,” IEEE J. Quantum Electron. 29, 1212–1217 (1993).
[CrossRef]

J. Appl. Phys. (2)

C. L. Tang, H. Statz, and G. De Mars, “Spectral output and spiking of solid-state lasers” J. Appl. Phys. 34, 2289–2295(1963).
[CrossRef]

W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36, 2487–2490 (1965).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B (1)

N. D. Zameroski, W. Rudolph, G. D. Hager, and D. A. Hostutler, “A study of collisional quenching and radiation-trapping kinetics for Rb (5p) in the presence of methane and ethane using time-resolved fluorescence,” J. Phys. B 42, 245401 (2009).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

N. D. Zameroski, G. D. Hager, W. Rudolph, C. J. Erickson, and D. A. Hostutler, “Pressure broadening and collisional shift of the Rb D2 absorption line by CH4, C2H6, C3H8, n-C4H10, and He,” J. Quant. Spectrosc. Radiat. Transfer 112, 59–67 (2011).
[CrossRef]

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines ((5S21/2→5P21,2,5P23,2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transfer 57, 497–507 (1997).
[CrossRef]

Opt. Commun. (2)

C. V. Sulham, G. P. Perram, M. P. Wilkinson, and D. A. Hostutler, “A pulsed, optically-pumped rubidium laser at high pump intensity,” Opt. Commun. 283, 4328–4332 (2010).
[CrossRef]

J. Zweiback, G. D. Hager, and W. F. Krupke, “High efficiency hydrocarbon-free resonance transition potassium laser,” Opt. Commun. 282, 1871–1873 (2009).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. (1)

A. Gallagher, “Rubidium and cesium excitation transfer in nearly adiabatic collisions with inert gases,” Phys. Rev. 172, 88–96 (1968).
[CrossRef]

Phys. Rev. A (1)

M. D. Rotondaro and G. P. Perram, “Role of rotational-energy defect in collisional transfer between the 5P21/2,3/2 levels in rubidium,” Phys. Rev. A 57, 4045–4048 (1998).
[CrossRef]

Proc. SPIE (6)

G. A. Pitz and G. P. Perram, “Pressure broadening of the D1 and D2 lines in diode pumped alkali lasers,” Proc. SPIE 7005, 700526 (2008).
[CrossRef]

J. Zweiback, A. Komashka, and W. F. Krupke, “Alkali vapor lasers,” Proc. SPIE 7581, 75810G (2010).
[CrossRef]

J. Zweiback and W. F. Krupke, “High power diode pumped alkali vapor lasers,” Proc. SPIE 7005, 700525 (2008).
[CrossRef]

T. A. Perschbacher, D. A. Hostutler, and T. M. Shay, “High-efficiency diode-pumped rubidium laser: experimental results,” Proc. SPIE 6346, 634607 (2007).
[CrossRef]

B. V. Zhdanov and R. J. Knize, “Alkali lasers development at the Laser and Optics Research Center of the U.S. Air Force Academy,” Proc. SPIE 7005, 700524 (2008).
[CrossRef]

G. D. Hager and G. P. Perram, “Extended saturation analysis and analytical model of diode pumped alkali lasers” Proc. SPIE 7581, 75810J (2010).
[CrossRef]

Other (6)

C. D. Lewis, “A theoretical model analysis of the absorption of a three level diode pumped alkali laser,” Master’s thesis (Department of Engineering Physics, Graduate School of Engineering and Management, Air Force Institute of Technology, 2009), http://handle.dtic.mil/100.2/ADA495858.

D. A. Steck, “Rubidium 85 D line data & rubidium 87 D line data,” http://steck.us/alkalidata.

A. Siegman, Lasers (University Science, 1986).

W. Koechner and M. Bass, Solid-State Lasers—A Graduate Text (Springer2003).

M. W. Sasnett, “Propagation of multimode laser beams—the M2 factor,” in The Physics and Technology of Laser Resonators, D.R.Hall and P.E.Jackson, eds. (Institute of Physics, 1989), pp. 136–142.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice Hall1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Energy level diagram of the Rb-OPAL. Also shown are the pump ( λ P ) and laser ( λ L ) transitions, the collisional mixing rate ( γ mix ), and the decay rates ( Γ 21 and Γ 31 ). Δ E = 237.6 cm 1 .

Fig. 2
Fig. 2

Schematic diagram of the Rb-OPAL experiment. HR, high reflector; PBS, polarizing beam splitting cube. The Rb CH 4 reference cell was used to ensure the Ti–sapphire pump laser remained on resonance of the D2 absorption line. The solid line is the pump ( 780 nm ) and the dashed line is the laser ( 795 nm ).

Fig. 3
Fig. 3

Lorentzian distribution with Δ ν 31 = 18 GHz representing the D2 absorption line and Gaussian distribution with Δ ν P = 50 GHz representing the pump spectrum.

Fig. 4
Fig. 4

A, simulated slope efficiency ( S lope ) versus pump energy for different pump spectral widths ( Δ ν P ) for cell condition I at 137 ° C . B, Calculated absorbed pump energy ( E P abs ) versus pump energy for different pump spectral widths.

Fig. 5
Fig. 5

Simulated pump energy balance at 137 ° C (while lasing) as a function of pump energy. A, cell condition I and B, cell condition II.

Fig. 6
Fig. 6

Laser energy versus output coupler reflectivity for cell condition I at 137 ° C for different window transmission coefficients t L . Experimental data (solid circles) and simulations (solid curves); E P = 1074 μJ , η = 0.78 .

Fig. 7
Fig. 7

Measured ratio of the laser energy to pump energy versus cell temperature for E P = 150 μJ (open circles) and 1131 μJ (solid squares) for cell condition I. Simulations are solid curves; η = 0.70 and 0.77 for E P = 150 μJ and E P = 1131 μJ , respectively.

Fig. 8
Fig. 8

Laser energy versus pump energy for cell condition I. Experimental data (solid circles) and simulations (solid curves). The [Rb] for cell temperatures of 105 ° C , 120 ° C , 137 ° C , and 145 ° C are 0.84 × 10 13 , 2.1 × 10 13 , 5.3 × 10 13 , and 8.0 × 10 13 cm 3 , respectively.

Fig. 9
Fig. 9

Laser energy versus pump energy. A, simulations for cell conditions I and II at 137 ° C for beam diameters D P = 0.30 ± 0.02 cm with η = t L = 1 . B, experimental data for cell conditions I (solid circles) and II (open squares) at 137 ° C and simulations for cell condition II (solid curves) with D P of 0.30 and 0.32 cm with η = 0.70 and t L = 0.988 .

Fig. 10
Fig. 10

A, simulated pump and laser pulse ( L P ) temporal waveforms for cell condition I at different cell temperatures for pump energy of 1080 μJ , η = 1 . B, experimental temporal waveforms for the same conditions as simulations. C, experimental pump and laser pulse temporal profiles for E P = 1136 μJ showing relaxation oscillation for a cell temperature of 137 ° C .

Fig. 11
Fig. 11

Laser spot size diameter (open circles) and laser energy (solid squares) versus pump energy delivered to gain media E DEL for cell condition I at 137 ° C . The beam diameter was measured at 22 cm from the cavity output coupler. The solid line is a linear fit of laser energy versus E DEL .

Fig. 12
Fig. 12

Measured spot size laser diameter (open circles) at 29 cm from the cavity output coupler versus temperature for cell condition I. Also shown is the measured laser energy (solid squares) versus temperature. The pump energy was held constant at 562 μJ throughout measurements.

Fig. 13
Fig. 13

A, measured beam radius (open shapes) versus propagation distance z from the cavity output coupler and numerical fits (solid curves) for different pump energies for cell condition I at 137 ° C . B, extracted curve fit values of W o (solid squares) and M 2 (open circles) versus pump energy. Solid lines in B connect experimental data points.

Fig. 14
Fig. 14

Schematic of pump configuration, showing pump intensities at different intercavity locations. The following definitions are used; t P and R P are the gain cell window transmission coefficient and the reflectance of the right folding mirror at the D2 wavelength, respectively. The quantity g 31 = σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) is used to condense the notation.

Tables (1)

Tables Icon

Table 1 Cell Condition

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d n 1 ( t ) d t = Ω ( t ) h ν 31 + σ 21 ( n 2 ( t ) n 1 ( t ) ) Ψ ( t ) h ν 21 + n 2 ( t ) Γ 21 + n 3 ( t ) Γ 31 ,
d n 2 ( t ) d t = σ 21 ( n 2 ( t ) n 1 ( t ) ) Ψ ( t ) h ν 21 + γ mix ( n 3 ( t ) 2 exp [ θ ] n 2 ( t ) ) n 2 ( t ) Γ 21 ,
d n 3 ( t ) d t = Ω ( t ) h ν 31 γ mix ( n 3 ( t ) 2 exp [ θ ] n 2 ( t ) ) n 3 ( t ) Γ 31 ,
d Ψ ( t ) d t = ( t L 4 r exp [ 2 l g σ 21 ( n 2 ( t ) n 1 ( t ) ) ] 1 ) Ψ ( t ) τ RT + n 2 ( t ) c 2 σ 21 h ν 21 l g ,
Ω ( t ) = P P ( t ) l g [ f P ( ν ) ( 1 exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ] ) t P × ( 1 + t P 2 R P exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ] ) d v ] ,
P P ( t ) = ( E P A P ) ( 2 ln ( 2 ) π Δ t P ) exp [ 4 ln ( 2 ) ( ( t t 0 ) Δ t P ) 2 ] .
f P ( ν ) = ( 2 ln ( 2 ) π Δ ν P ) exp [ 4 ln ( 2 ) ( ( ν ν 31 ) Δ ν P ) 2 ] .
I Lase ( t ) = η Ψ ( t ) ( σ 21 ( n 2 ( t ) n 1 ( t ) ) l g t L ( 1 r ) exp [ σ 21 ( n 2 ( t ) n 1 ( t ) ) l g ] ( exp [ σ 21 ( n 2 ( t ) n 1 ( t ) ) l g ] 1 ) ( 1 + t L 2 r exp [ σ 21 ( n 2 ( t ) n 1 ( t ) ) l g ] ) ) ,
σ i , j k ( ν ) = c 2 ν i , j k 2 8 π τ i , j k g i , j k ( ν ) ,
g i , j k ( ν ) = ( 1 2 π ) ( Δ ν i , j k ( ν ν i , j k ) 2 + ( Δ ν i , j k / 2 ) 2 ) .
η = g 21 ( x , y , z ) I res ( x , y , z ) d x d y d z I res 2 ( x , y , z ) d x d y d z .
W ( z ) = W o 1 + ( M 2 λ z / ( π W o 2 ) ) 2 ,
Ω ( t ) = σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) I P avg ( t , ν ) d ν ,
I P 0 + = t P P P ( t ) f P ( ν ) , I P 0 = t P 3 R P P P ( t ) f P ( ν ) exp [ g 31 l g ] .
I ( t , ν , z ) z = σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) I ( t , ν , z ) .
I ( t , ν , z ) = I 0 exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) z ] .
I l avg ( t , ν ) = 1 l g ( I P 0 + 0 l g exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) z ] d z + I P 0 0 l g exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) ( l g z ) ] d z ) .
I l avg ( t , ν ) = ( P P ( t ) f P ( ν ) σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ) ( exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ] 1 ) × t P ( 1 + t P 2 R P exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ) .
Ω ( t ) = P P ( t ) l g [ f P ( ν ) ( 1 exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ] ) × ( 1 + t P 2 R P exp [ σ 31 ( ν ) ( n 3 ( t ) 2 n 1 ( t ) ) l g ] ) d v ] .
E P Pulse = A P t , ν I 1 ( t , ν ) d t d ν = E P Absorbed + E P Scat + E P Tran .
E P Absorbed = A P t , ν ( ( I 2 ( t , ν ) I 3 ( t , ν ) ) F + ( I 6 ( t , ν ) I 7 ( t , ν ) ) R ) d t d ν .
I Scat ( t , ν ) = ( I 1 ( t , ν ) I 2 ( t , ν ) ) + ( I 3 ( t , ν ) I 4 ( t , ν ) ) + ( I 5 ( t , ν ) I 6 ( t , ν ) ) + ( I 7 ( t , ν ) I 8 ( t , ν ) ) ,
E P Scat = A P t , ν I Scat ( t , ν ) d t d ν .
E P Tran = A P t , ν I 8 ( t , ν ) d t d ν .

Metrics