Abstract

Influence of fiber length on the self-pulsing (SP) characteristics of 2μm Tm3+-doped silica fiber lasers are investigated experimentally and theoretically. In SP operation, the laser pulse width narrows and the repetition rate increases with the decrease of fiber length. By shortening the fiber length to 2m and angle-polishing the output fiber-end facet, SP pulse width less than 100ns is achieved, comparable to that from conventional actively Q-switched Tm3+ fiber lasers. Theoretically simulated SP characteristics of the 2μm Tm3+-doped fiber laser show good agreement with the experimental results. Further narrowing the pulse width in SP fiber lasers and their potential applications are also discussed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339(1998).
    [CrossRef]
  2. T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
    [CrossRef]
  3. Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
    [CrossRef]
  4. Y. L. Tang and J. Q. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-1–10 (2008).
    [CrossRef]
  5. S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178–2188 (1999).
    [CrossRef]
  6. A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389(2002).
    [CrossRef]
  7. F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031–1043 (2005).
    [CrossRef]
  8. F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
    [CrossRef]
  9. S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464(1998).
    [CrossRef]
  10. Y. L. Tang and J. Q. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27, 179–186 (2010).
    [CrossRef]
  11. Y. L. Tang and J. Q. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
    [CrossRef]
  12. M. J. F. Digonnet, Rare-Earth-Doped Fiber Laser and Amplifiers, 2nd ed. (Marcel Dekker Inc., 2001).
    [CrossRef]
  13. A. F. El-Sherif and T. A. King, “High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 μm,” Opt. Lett. 28, 22–24 (2003).
    [CrossRef] [PubMed]
  14. M. Eichhorn, “Development of a high-pulse-energy Q-switched Tm-doped double-clad fluoride fiber laser and its application to the pumping of mid-IR lasers,” Opt. Lett. 32, 1056–1058(2007).
    [CrossRef] [PubMed]
  15. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956(1999).
    [CrossRef]

2011

Y. L. Tang and J. Q. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

2010

2008

Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
[CrossRef]

Y. L. Tang and J. Q. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-1–10 (2008).
[CrossRef]

2007

2005

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031–1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

2003

2002

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389(2002).
[CrossRef]

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

1999

1998

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339(1998).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464(1998).
[CrossRef]

Carrig, T. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Digonnet, M. J. F.

M. J. F. Digonnet, Rare-Earth-Doped Fiber Laser and Amplifiers, 2nd ed. (Marcel Dekker Inc., 2001).
[CrossRef]

Eichhorn, M.

Elder, I. F.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339(1998).
[CrossRef]

El-Sherif, A. F.

A. F. El-Sherif and T. A. King, “High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 μm,” Opt. Lett. 28, 22–24 (2003).
[CrossRef] [PubMed]

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389(2002).
[CrossRef]

Hang, Y.

Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
[CrossRef]

Hankla, A. K.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Jackson, S. D.

King, T. A.

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031–1043 (2005).
[CrossRef]

A. F. El-Sherif and T. A. King, “High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 μm,” Opt. Lett. 28, 22–24 (2003).
[CrossRef] [PubMed]

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389(2002).
[CrossRef]

S. D. Jackson and T. A. King, “Dynamics of the output of heavily Tm-doped double-clad silica fiber lasers,” J. Opt. Soc. Am. B 16, 2178–2188 (1999).
[CrossRef]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17, 948–956(1999).
[CrossRef]

S. D. Jackson and T. A. King, “High-power diode-cladding-pumped Tm-doped silica fiber laser,” Opt. Lett. 23, 1462–1464(1998).
[CrossRef]

Kinnie, I. T. M.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Payne, M. J. P.

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339(1998).
[CrossRef]

Qamar, F. Z.

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031–1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

Rawle, C. B.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Tang, Y. L.

Y. L. Tang and J. Q. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

Y. L. Tang and J. Q. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27, 179–186 (2010).
[CrossRef]

Y. L. Tang and J. Q. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-1–10 (2008).
[CrossRef]

Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
[CrossRef]

Wagner, G. J.

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Xu, J. Q.

Y. L. Tang and J. Q. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

Y. L. Tang and J. Q. Xu, “Effects of excited-state absorption on self-pulsing in Tm3+-doped fiber lasers,” J. Opt. Soc. Am. B 27, 179–186 (2010).
[CrossRef]

Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
[CrossRef]

Y. L. Tang and J. Q. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-1–10 (2008).
[CrossRef]

Yang, Y.

Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
[CrossRef]

Chin. Phys. Lett.

Y. Yang, Y. L. Tang, J. Q. Xu, and Y. Hang, “Tm-Doped Fiber Laser Pumped Cr2+:ZnSe Poly-crystal Lasers,” Chin. Phys. Lett. 25, 116–119 (2008).
[CrossRef]

IEEE J. Quantum Electron.

Y. L. Tang and J. Q. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47, 165–171 (2011).
[CrossRef]

J. Lightwave Technol.

J. Mod. Opt.

F. Z. Qamar and T. A. King, “Self-induced pulsations, Q-switching and mode-locking in Tm-silica fibre lasers,” J. Mod. Opt. 52, 1031–1043 (2005).
[CrossRef]

F. Z. Qamar and T. A. King, “Self-mode-locking effects in heavily doped single-clad Tm3+-doped silica fibre lasers,” J. Mod. Opt. 52, 1053–1063 (2005).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. F. El-Sherif and T. A. King, “Dynamics and self-pulsing effects in Tm3+-doped silica fibre lasers,” Opt. Commun. 208, 381–389(2002).
[CrossRef]

I. F. Elder and M. J. P. Payne, “Lasing in diode-pumped Tm:YAP, Tm,Ho:YAP and Tm, Ho:YLF,” Opt. Commun. 145, 329–339(1998).
[CrossRef]

Opt. Lett.

Proc. SPIE

T. J. Carrig, A. K. Hankla, G. J. Wagner, C. B. Rawle, and I. T. M. Kinnie, “Tunable infrared laser sources for DIAL,” Proc. SPIE 4723, 147–155 (2002).
[CrossRef]

Y. L. Tang and J. Q. Xu, “Self-induced pulsing in Tm3+-doped fiber lasers with different output couplings,” Proc. SPIE 7276, 72760L-1–10 (2008).
[CrossRef]

Other

M. J. F. Digonnet, Rare-Earth-Doped Fiber Laser and Amplifiers, 2nd ed. (Marcel Dekker Inc., 2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of the self-pulsing Tm 3 + fiber laser. LD, laser diode; HT, high transmission; HR, high reflection; DSO, digital storage oscilloscope. The metal block is incorporated to reflect the signal light.

Fig. 2
Fig. 2

Self-pulsing threshold (squares) and the second CW threshold (circles) as a function of fiber length.

Fig. 3
Fig. 3

Pulse trains of the self-pulsed Tm 3 + -doped fiber laser with fiber length of (a)  16 m and (b)  8 m .

Fig. 4
Fig. 4

(a) Pulse width and (b) frequency of the self-pulsing Tm 3 + fiber laser as a function of pump ratio with fiber length from 6 to 20 m .

Fig. 5
Fig. 5

(a) Pulse width and (b) frequency of the self-pulsing Tm 3 + fiber laser as function of pump ratio with fiber lengths of 2 m and 4 m . Inset in (a) shows the 2 m results with axis scaled; inset in (b) shows the pulse shape measured with the 2 m fiber at the pump ratio of 2.

Fig. 6
Fig. 6

Schematic of the simulation process.

Fig. 7
Fig. 7

Simulated (a) pulse width and (b) frequency of the self-pulsing Tm 3 + fiber laser as a function of pump ratio with various fiber lengths.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d S f , b ( z ) d z = ± S f , b ( z ) [ σ e Δ N ( z ) σ s a N 3 ( z ) δ s ] ,
S b ( L ) = R S 2 S f ( L ) , S f ( 0 ) = R S 1 S b ( 0 ) ,

Metrics