Abstract

We report on power, tuning, and temporal characteristics of an optical parametric oscillator (OPO) based on a periodically poled stoichiometric lithium tantalate (PPSLT) crystal and pumped by a high-power mode-locked Ti:sapphire laser. Focus is given to the OPO operating range spanning from 900 to 1350nm, which is important in nonlinear optical microscopy and spectroscopy. Generation of peak powers beyond the 10kW level is strongly affected by the onset of intracavity power-dependent loss, which is due to the high ultrafast Kerr nonlinearity of the gain material. The crystal withstands combined power densities higher than 60GW/cm2 for 100fs optical pulses before breakdown occurs. A resonator design that mitigates self- and cross-beam focusing effects delivers 40kW peak power for 85160fs pulses. The high parametric gain of the PPSLT allows OPO operation at the twelfth harmonic of the pump laser repetition rate (0.91GHz). Stable operation with the possibility of broad wavelength tuning is demonstrated without active cavity length stabilization at a repetition rate of 530MHz and average powers above 150mW. In addition, up to 50mW of power at 530nm is output as a result of SHG of the 1060nm signal beam resulting from third-order quasi phase matching.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
    [CrossRef] [PubMed]
  2. M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
    [CrossRef]
  3. J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002).
    [PubMed]
  4. C. L. Evans, X. Xu, S. Kesari, X. S. Xie, S. T. C. Wong, and G. S. Young, “Chemically-selective imaging of brain structures with CARS microscopy,” Opt. Express 15, 12076 (2007).
    [CrossRef] [PubMed]
  5. D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
    [CrossRef]
  6. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17, 13354–13364(2009).
    [CrossRef] [PubMed]
  7. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
    [CrossRef]
  8. M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
    [CrossRef] [PubMed]
  9. A. Nikolaenko, V. Krishnamachari, and E. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
    [CrossRef]
  10. D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
    [CrossRef]
  11. S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. N. Malinowski, D. J. Richardson, and U. Keller, “Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1 W signal average output power in the spectral region near 1.5 μm,” Opt. Lett. 30, 290–292 (2005).
    [CrossRef] [PubMed]
  12. T. Südmeyer, J. A. der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001).
    [CrossRef]
  13. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009).
    [CrossRef] [PubMed]
  14. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  15. V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
    [CrossRef]
  16. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
    [CrossRef]
  17. G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 2623–2625 (2007).
    [CrossRef] [PubMed]
  18. S. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30, 2451–2453 (2005).
    [CrossRef] [PubMed]
  19. T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
    [CrossRef] [PubMed]
  20. K. V. Bhupathiraju, A. D. Seymour, and F. Ganikhanov, “Femtosecond optical parametric oscillator based on periodically poled stoichiometric LiTaO3 crystal,” Opt. Lett. 34, 2093–2095 (2009).
    [CrossRef] [PubMed]
  21. A. Bruner, D. Eger, M. B. Oron, P. Blau, and M. Katz, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196(2003).
    [CrossRef] [PubMed]
  22. M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31, 83–85 (2006).
    [CrossRef] [PubMed]
  23. T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B 16, 90–95 (1999).
    [CrossRef]
  24. G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639(1968).
    [CrossRef]
  25. A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “High-energy femtosecond pulse amplification in a quasi-phase-matched parametric amplifier,” Opt. Lett. 23, 210–212 (1998).
    [CrossRef]
  26. E. C. Cheung and J. M. Liu, “Theory of a synchronously pumped optical parametric oscillator in steady-state operation,” J. Opt. Soc. Am. B 7, 1385–1401 (1990).
    [CrossRef]
  27. S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
    [CrossRef]
  28. J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch,” Opt. Lett. 19, 831–833(1994).
    [CrossRef] [PubMed]
  29. W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator” Opt. Lett. 17, 1070–1072 (1992).
    [CrossRef] [PubMed]
  30. S. F. Fulghum and M. M. Tilleman, “Interferometric calorimeter for the measurement of water-vapor absorption,” J. Opt. Soc. Am. B 8, 2401–2413 (1991).
    [CrossRef]
  31. H. T. Hsieh, D. Psaltis, O. Beyer, D. Maxein, C. von Korff Schmising, K. Buse, and B. Sturman, “Femtosecond holography in lithium niobate crystals,” Opt. Lett. 30, 2233–2235 (2005).
    [CrossRef] [PubMed]
  32. A. Esteban-Martin, O. Kokabee, K. Moutzouris, and M. Ebrahim-Zadeh, “High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator pumped by a 76 MHz Ti:sapphire laser,” Opt. Lett. 34, 428–430 (2009).
    [CrossRef] [PubMed]

2009 (6)

2007 (2)

2006 (4)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
[CrossRef]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31, 83–85 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

2003 (1)

2002 (3)

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

J. Limpert, T. Schreiber, T. Clausnitzer, K. Zöllner, H. Fuchs, E. Kley, H. Zellmer, and A. Tünnermann, “High-power femtosecond Yb-doped fiber amplifier,” Opt. Express 10, 628–638 (2002).
[PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

2001 (1)

1999 (2)

1998 (1)

1995 (1)

1994 (1)

1992 (1)

1991 (1)

1990 (1)

1989 (1)

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

1968 (2)

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

Akhmanov, S.

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Andrews, J. H.

Arbore, M. A.

Barannikov, A. V.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Beaurepaire, E.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Beyer, O.

Bhupathiraju, K. V.

Blankova, E. B.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Blau, P.

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

Bosenberg, W. R.

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

Bruner, A.

Brunner, F.

Buse, K.

Byer, R. L.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

Carrasco, S.

Cheung, E. C.

Chirkin, A.

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Cianci, E.

Clausnitzer, T.

Combettes, L.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Das, R.

Débarre, D.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

der Au, J. A.

Drabovich, K.

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Durst, M. E.

Ebrahim-Zadeh, M.

Eckardt, R. C.

Edelstein, D. C.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

Eger, D.

Esteban-Martin, A.

Evans, C. L.

Fabre, A.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Fayaz, G. R.

Fejer, M. M.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “High-energy femtosecond pulse amplification in a quasi-phase-matched parametric amplifier,” Opt. Lett. 23, 210–212 (1998).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

Foglietti, V.

Fuchs, H.

Fulghum, S. F.

Furusawa, K.

Galvanauskas, A.

Ganikhanov, F.

Gao, Z. D.

Greve, J.

Hanna, D. C.

Hariharan, A.

Harter, D.

Herek, J. L.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Hsieh, H. T.

Innerhofer, E.

Ito, H.

Jurna, M.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
[CrossRef]

Katz, M.

Keller, U.

Kesari, S.

Khaydarov, J. D. V.

Khokhlov, R.

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Kitamura, K.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

Kley, E.

Kobat, D.

Kokabee, O.

Kopf, D.

Korterik, J. P.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
[CrossRef]

Kovrigin, A.

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Krishnamachari, V.

A. Nikolaenko, V. Krishnamachari, and E. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

Kumar, S. C.

Kung, A. H.

Kurimura, S.

Lecomte, S.

Limpert, J.

Liu, J. M.

Lobino, M.

Malinowski, A. N.

Marangoni, M.

Maxein, D.

Meyn, J.-P.

Mlynek, J.

Moutzouris, K.

Myers, L. E.

Nakamura, M.

Nikolaenko, A.

A. Nikolaenko, V. Krishnamachari, and E. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

Nikolaeva, E. V.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Nishimura, N.

Offerhaus, H. L.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
[CrossRef]

Oron, M. B.

Otto, C.

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
[CrossRef]

T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B 16, 90–95 (1999).
[CrossRef]

Paschotta, R.

Pawlik, S.

Pelouch, W. S.

Pena, A.-M.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Peters, A.

Pierce, J. W.

Potma, E.

A. Nikolaenko, V. Krishnamachari, and E. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

Powers, P. E.

Psaltis, D.

Ramponi, R.

Richardson, D. J.

Ross, G. W.

Route, R. K.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Rumyantsev, E. L.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Samanta, G. K.

Schaffer, C. B.

Schanne-Klein, M.-C.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Schiller, S.

Schmidt, B.

Schreiber, T.

Seitz, W.

Seymour, A. D.

Shishkin, E. I.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Shur, V. Y.

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

Singer, K. D.

Smith, P. G. R.

Strössner, U.

Sturman, B.

Südmeyer, T.

Sukhorukov, A.

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

Supatto, W.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Takekawa, S.

Tang, C. L.

W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator” Opt. Lett. 17, 1070–1072 (1992).
[CrossRef] [PubMed]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

Tilleman, M. M.

Tordjmann, T.

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Tu, S.

Tukker, T. W.

Tünnermann, A.

Usami, T.

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

von Korff Schmising, C.

Wachman, E. S.

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

Wallenstein, R.

Wong, A. W.

Wong, S. T. C.

Xie, X. S.

Xu, C.

Xu, X.

Young, G. S.

Zellmer, H.

Zhu, S. N.

Zöllner, K.

Appl. Phys. Lett. (4)

M. Jurna, J. P. Korterik, H. L. Offerhaus, and C. Otto, “Noncritical phase-matched lithium triborate optical parametric oscillator for high resolution coherent anti-Stokes Raman scattering spectroscopy and microscopy,” Appl. Phys. Lett. 89, 251116(2006).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering: imaging based on Raman free induction decay,” Appl. Phys. Lett. 80, 1505–1507 (2002).
[CrossRef]

V. Y. Shur, E. B. Blankova, E. L. Rumyantsev, E. V. Nikolaeva, E. I. Shishkin, A. V. Barannikov, R. K. Route, M. M. Fejer, and R. L. Byer, “X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalite and lithium niobate,” Appl. Phys. Lett. 80, 1037–1039 (2002).
[CrossRef]

D. C. Edelstein, E. S. Wachman, and C. L. Tang, “Broadly tunable high repetition rate femtosecond optical parametric oscillator,” Appl. Phys. Lett. 54, 1728–1730 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. Akhmanov, A. Chirkin, K. DrabovichA. Kovrigin, R. Khokhlov, and A. Sukhorukov, “Nonstationary nonlinear optical effects and ultrashort light pulse formation,” IEEE J. Quantum Electron. 4, 598–605 (1968).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, “Parametric interaction of focused Gaussian light beams,” J. Appl. Phys. 39, 3597–3639(1968).
[CrossRef]

J. Opt. Soc. Am. B (4)

Nat. Meth. (1)

D. Débarre, W. Supatto, A.-M. Pena, A. Fabre, T. Tordjmann, L. Combettes, M.-C. Schanne-Klein, and E. Beaurepaire, “Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy,” Nat. Meth. 3, 47–53 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (16)

F. Ganikhanov, S. Carrasco, X. S. Xie, M. Katz, W. Seitz, and D. Kopf, “Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 31, 1292–1294 (2006).
[CrossRef] [PubMed]

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, “Single-frequency continuous-wave radiation from 0.77 to 1.73 μm generated by a green-pumped optical parametric oscillator with periodically poled LiTaO3,” Opt. Lett. 24, 1602–1604 (1999).
[CrossRef]

G. K. Samanta, G. R. Fayaz, and M. Ebrahim-Zadeh, “1.59 W, single-frequency, continuous-wave optical parametric oscillator based on MgO:sPPLT,” Opt. Lett. 32, 2623–2625 (2007).
[CrossRef] [PubMed]

S. Tu, A. H. Kung, Z. D. Gao, and S. N. Zhu, “Efficient periodically poled stoichiometric lithium tantalate optical parametric oscillator for the visible to near-infrared region,” Opt. Lett. 30, 2451–2453 (2005).
[CrossRef] [PubMed]

T. Südmeyer, E. Innerhofer, F. Brunner, R. Paschotta, T. Usami, H. Ito, S. Kurimura, K. Kitamura, D. C. Hanna, and U. Keller, “High-power femtosecond fiber-feedback optical parametric oscillator based on periodically poled stoichiometric LiTaO3,” Opt. Lett. 29, 1111–1113 (2004).
[CrossRef] [PubMed]

K. V. Bhupathiraju, A. D. Seymour, and F. Ganikhanov, “Femtosecond optical parametric oscillator based on periodically poled stoichiometric LiTaO3 crystal,” Opt. Lett. 34, 2093–2095 (2009).
[CrossRef] [PubMed]

A. Bruner, D. Eger, M. B. Oron, P. Blau, and M. Katz, “Temperature-dependent Sellmeier equation for the refractive index of stoichiometric lithium tantalate,” Opt. Lett. 28, 194–196(2003).
[CrossRef] [PubMed]

M. Lobino, M. Marangoni, R. Ramponi, E. Cianci, V. Foglietti, S. Takekawa, M. Nakamura, and K. Kitamura, “Optical-damage-free guided second-harmonic generation in 1% MgO-doped stoichiometric lithium tantalate,” Opt. Lett. 31, 83–85 (2006).
[CrossRef] [PubMed]

H. T. Hsieh, D. Psaltis, O. Beyer, D. Maxein, C. von Korff Schmising, K. Buse, and B. Sturman, “Femtosecond holography in lithium niobate crystals,” Opt. Lett. 30, 2233–2235 (2005).
[CrossRef] [PubMed]

A. Esteban-Martin, O. Kokabee, K. Moutzouris, and M. Ebrahim-Zadeh, “High-harmonic-repetition-rate, 1 GHz femtosecond optical parametric oscillator pumped by a 76 MHz Ti:sapphire laser,” Opt. Lett. 34, 428–430 (2009).
[CrossRef] [PubMed]

J. D. V. Khaydarov, J. H. Andrews, and K. D. Singer, “Pulse compression in a synchronously pumped optical parametric oscillator from group-velocity mismatch,” Opt. Lett. 19, 831–833(1994).
[CrossRef] [PubMed]

W. S. Pelouch, P. E. Powers, and C. L. Tang, “Ti:sapphire-pumped, high-repetition-rate femtosecond optical parametric oscillator” Opt. Lett. 17, 1070–1072 (1992).
[CrossRef] [PubMed]

A. Galvanauskas, A. Hariharan, D. Harter, M. A. Arbore, and M. M. Fejer, “High-energy femtosecond pulse amplification in a quasi-phase-matched parametric amplifier,” Opt. Lett. 23, 210–212 (1998).
[CrossRef]

S. Lecomte, R. Paschotta, S. Pawlik, B. Schmidt, K. Furusawa, A. N. Malinowski, D. J. Richardson, and U. Keller, “Optical parametric oscillator with a pulse repetition rate of 39 GHz and 2.1 W signal average output power in the spectral region near 1.5 μm,” Opt. Lett. 30, 290–292 (2005).
[CrossRef] [PubMed]

T. Südmeyer, J. A. der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric oscillator,” Opt. Lett. 26, 304–306 (2001).
[CrossRef]

R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. Nikolaenko, V. Krishnamachari, and E. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Phys. Rev. A 79, 013823 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

M. Jurna, J. P. Korterik, C. Otto, J. L. Herek, and H. L. Offerhaus, “Vibrational phase contrast microscopy by use of coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 103, 043905 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Calculated temperature tuning curve, parametric gain, and threshold for PPSLT-crystal-based OPO. The corresponding Sellmeier relations are obtained from work published by Bruner et al. [21]. The QPM period (Λ) was chosen to be 23.0 μm , and the pump wavelength was assumed to be 810 nm . (a) Wavelength tuning curve versus temperature for signal and idler waves. (b) Single-pass parametric gain (left scale) versus signal wavelength for 1 mm long PPSLT crystal held at 155 ° C and average power threshold (right scale) for synchronously pumped linear resonator that makes use of 10% OC and has 1% additional intracavity loss.

Fig. 2
Fig. 2

Experimental setup: HR1, HR2, high-reflection-coated mirrors with either a 10 or 20 cm radius of curvature; PPSLT, 1 mm long multigrating period periodically poled stoichiometric lithium tantalate crystal; P1, P2, P3, SF10 glass material Brewster angle cut dispersive prisms; HR3, HR 3 , flat surface, highly reflecting mirrors; OC-OPO, output coupler with 5%–10% transmission; L1, L2, plano–convex lenses; ATT, light power attenuators; PD1, PD2, calibrated photodiodes; AC, intensity autocorrelator; OSA, optical spectrum analyzer; PM, power meter; M1, M2, M3, beam steering flip mirrors. The pump beam is the output of the high-power Ti:sapphire oscillator. The OPO resonator optics favored signal wave to resonate. ω p , ω s , and 2 ω s are the optical frequencies for the pump, signal, and second harmonic of the signal wave, respectively.

Fig. 3
Fig. 3

(a) Signal beam output power (open circles and left scale data) and pump depletion data (solid points and right scale data) versus pump power from the OPO without intracavity dispersion compensation operating at λ s 1085 nm ( Λ = 23 μm , T = 160 ° C , λ p = 810 nm ). Solid and dashed curves represent the calculated results for power and depletion curves, respectively, based on the model outlined by Eqs. (1, 2, 3) and assuming T OC = 0.1 and α = 0.01 . (b) Typical signal pulse autocorrelation for the dispersion-uncompensated OPO cavity pumped with 1.1 W power (i.e., about 10 times above the threshold). (c) Corresponding spectrum of the signal pulse.

Fig. 4
Fig. 4

(a) Signal pulse autocorrelation function (thin curve) for the case of the externally compensated output signal pulse using a pair of SF-10 prisms spaced apart by 800 mm . The bold curve shows the uncompensated signal pulse for comparison. In both cases, the OPO was pumped at a high power level ( 1.1 W ). (b) OPO pulse width dependence on the pump-power level. Signal pulse autocorrelation (thin curve) at a pump power of 250 mW (i.e., about two times the OPO threshold) shown in comparison with the uncompensated pulse autocorrelation (bold curve) corresponding to the case when the OPO was pumped at 1.1 W . (c) Signal pulse autocorrelation (thin curve) for the OPO cavity without dispersion compensation when the cavity length was detuned by + 4.5 μm from the reference position. Autocorrelation for the reference position is shown with the bold curve. (d) Corresponding pulse spectra for the reference (length matched) and detuned cases. The length detuning changes the central wavelength at a rate close to + 22 nm / μm .

Fig. 5
Fig. 5

(a) Signal beam output power (open circles and left scale data) and pump depletion (solid points and right scale data) from the dispersion-compensated OPO (i.e., with the intracavity prisms inside) operating at λ s = 1095 nm versus pump power ( Λ = 23 μm , λ p = 810 nm , T = 160 ° C ). Solid and dashed curves again represent the calculated results following the model. (b) Typical signal pulse autocorrelation for the OPO. (c) Corresponding spectrum of the signal pulse that yields a time–bandwidth product of Δ ν × t p = 0.42 , assuming a sech 2 pulse shape.

Fig. 6
Fig. 6

(a) Signal beam output power (open circles and left scale data) and pump depletion (solid points and right scale) from the dispersion compensated OPO operating at λ s = 985 nm versus pump power ( Λ = 20.6 μm , T = 170 ° C , λ p = 742 nm ). The corresponding calculated data are shown in lines. (b) Typical signal pulse autocorrelation for the OPO. (c) Corresponding spectrum of the signal pulse that yields a time–bandwidth product of Δ ν × t p = 0.38 , assuming a sech 2 pulse shape.

Fig. 7
Fig. 7

(a) Signal beam output power (open circles and left scale) and pump depletion (solid points and right scale) from the dispersion- compensated OPO operating at λ s = 1184 nm and at 1328 nm (open squares and left scale) versus pump power. Pump depletion is plotted for the 1184 nm signal wavelength only. Crystal and pump beam pa rameters are as follows: Λ = 23 μm , λ p = 810 nm , T = 160 , and 145 ° C for 1184 and 1328 nm operation, correspondingly. The corresponding calculated results are shown in lines for the 1184 nm case. (b) Typical signal pulse autocorrelation for the OPO at λ s = 1184 nm . (c) Corresponding spectrum of the signal pulse resulting in a time–bandwidth product of Δ ν × t p = 0.45 assuming a Gaussian pulse shape. (d) Typical signal pulse autocorrelation for the OPO operating at λ s = 1328 nm . (e) Corresponding spectrum of the signal pulse resulting in a time–bandwidth product of Δ ν × t p = 0.34 assuming a Gaussian pulse shape for the 110 fs pulse.

Fig. 8
Fig. 8

(a) Signal beam power data (open circles and left scale data) at λ s = 1058 nm and power of the corresponding second-harmonic beam at 529 nm (open squares and left scale) versus pump power. The depletion data (solid points) are also shown for this case. (b) Detected power (solid points) of the second harmonic of the oscillating signal beam versus the wavelength of the second harmonic. The solid curve is a calculated result showing that a third-order QPM is achieved for SHG process at λ s = 1060 nm . Note that the vertical (power) scale is broken.

Fig. 9
Fig. 9

(a) Power data for the OPO operating at 1195 nm with (open circles) and without (open squares) intracavity dispersion compensation. The depletion curve (solid points) is shown for the uncompensated cavity. Crystal and pump beam parameters are as follows: Λ = 23 μm , λ p = 810 nm , T = 160 ° C . The pulse width for the OPO without dispersion compensation is 430 fs , while for the compensated cavity, the pulse width is 120 fs . Solid lines represent the calculated power curves that were obtained for both dispersion-compensated and uncompensated, assuming an intensity-dependent cavity loss ( α = α 0 + α p s P p ). The calculation also assumes the depletion parameter calculated using Eq. (2) (thin solid curve) and the pa rameters α 0 and α p s determined from the experimental data shown in (b). Parameter α 0 for the uncompensated resonator is 0.015, and the slope α p s is 0.027 W 1 , while the values are 0.045 and 0.08 W 1 for the dispersion-compensated case. The dashed–dotted curve represents the power curve fit for the case of the dispersion-compensated cavity assuming the same loss parameters as quoted just above, but the depletion data are assumed to follow the corresponding trend line (thin dashed curve) shown on the plot. (b) Power-dependent losses inferred from the data for the two cases with the higher loss corresponding to the shorter pulse ( 120 fs ) mode, i.e., the case when the intracavity dispersion compensation was used. Solid lines are fits to the data assuming linear dependence of the loss with pump power.

Fig. 10
Fig. 10

(a) Power curves for the OPO utilizing concave mirrors with a 20 cm radius of curvature ( Λ = 23.6 μm , λ p = 822 nm , T = 165 ° C ). The wavelength of operation was at λ s 1140 nm , and intracavity dispersion compensating prisms were used. Open squares represent data for the OPO when the OPO was aligned to its lowest threshold and the intracavity dispersion was adjusted to deliver pulses of 110 fs . Solid circles (right scale) represent data on the pump-power depletion. Open circles represent the OPO output power for the case when it is aligned at a small angle ( < 3 ° ) between the interacting pump and signal beams. The OPO delivers the highest average power in this case, while the pulse width is 165 fs . Solid lines show the best-fitting results, assuming the same intracavity power-dependent loss param eters as in the previous figure. (b) Typical signal pulse autocorrelation at high output power ( 165 fs pulse width assuming a Gaussian shape). (c) Corresponding spectrum of the pulse. (d) Shortest pulse autocorrelation (bold solid curve) that was obtained from the OPO shown in comparison with the pump pulse autocorrelation (thin curve). The pulse width is 87 fs assuming a sech 2 pulse envelope, and this is 20% shorter than the pump pulse.

Fig. 11
Fig. 11

(a) Time–bandwidth product (solid points) and pulse width (open circles) for the OPO signal pulses across the entire tuning range. (b) OPO output power versus signal wavelength. The peak at 1150 nm corresponds to the case of soft focusing into the crystal (i.e., 20 cm radius-of-curvature mirrors and larger focal length pump focusing lens were utilized for the OPO).

Fig. 12
Fig. 12

(a) Oscilloscope traces of the mode-locked Ti:sapphire pump laser (upper trace) and fs OPO (lower trace) operating at the twelfth harmonics ( 912.5 MHz ) of the pump repetition rate. (b) Power curve for the OPO operating at the seventh harmonics ( 532.3 MHz ). The OPO crystal parameters and settings are the same as for the data presented in Fig. 3. (c) Pulse autocorrelation at the central wave length ( λ s = 1110 nm ) of the tuning range. (d) High-repetition-rate ( 532.3 MHz ) OPO spectra across the tuning range. The average power at the edges of the tuning range dropped by less than 30% from the power at the central wavelength.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G ( L c ) = 2 ω s ω i d Q 2 I p n p n s n i ε 0 c 3 L c 2 sin c 2 ( Δ k L c 2 ) ,
η = 1 P th P in 0 ln ( P in / P th ) cos 2 ( Γ ( x ) ) exp ( x ) d x ,
sin c 2 [ Γ ( x ) ] = P th P in exp ( x ) ,
P s = η T OC α + T OC λ P λ S P in .

Metrics