Abstract

We report on the characterization of Zeonex polymer in the terahertz (THz) region and the fabrication and characterization of a microstructured polymer fiber made of Zeonex. We demonstrate single-mode propagation with highly efficient coupling into the fiber close to the theoretical limit of 80% using specially designed lenses. The THz time domain measurements allow the loss and dispersion properties of the fiber to be determined, showing that for the current fiber the losses are only caused by the material loss. The phase refractive index is calcu lated from experimental data and compared to values predicted by scalar and vectorial simulations. Results for the dispersion parameter β2 for a THz microstructured fiber are presented for the first time to our knowledge.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
    [CrossRef] [PubMed]
  2. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent Terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  3. T. Bartel, P. Gaal, K. Reimann, M. Woerner, and T. Elsaesser, “Generation of single-cycle THz transients with high electric-field amplitudes,” Opt. Lett. 30, 2805–2807 (2005).
    [CrossRef] [PubMed]
  4. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive Terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11, 2549–2554 (2003).
    [CrossRef] [PubMed]
  5. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
    [CrossRef] [PubMed]
  6. Y. H. Lo and R. Leonhardt, “Aspheric lenses for terahertz imaging,” Opt. Express 16, 15991–15998 (2008).
    [CrossRef] [PubMed]
  7. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26, A6 –A13 (2009).
    [CrossRef]
  8. K. Wang and D. M. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005).
    [CrossRef]
  9. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268(2004).
    [CrossRef] [PubMed]
  10. A. Argyros, “Microstructured polymer optical fibers,” J. Lightwave Technol. 27, 1571–1579 (2009).
    [CrossRef]
  11. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601(2009).
    [CrossRef] [PubMed]
  12. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss terahertz guiding,” Opt. Express 16, 6340–6351 (2008).
    [CrossRef] [PubMed]
  13. S. Atakaramians, S. V. Afshar, H. Ebendorff-Heidepriem, M. Nagel, B. M. Fischer, D. Abbott, and T. M. Monro, “THz porous fibers: design, fabrication, and experimental characterization,” Opt. Express 17, 14053–14062 (2009).
    [CrossRef] [PubMed]
  14. C. S. Ponseca Jr., R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. Van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
    [CrossRef] [PubMed]
  15. http://www.zeonex.com.
  16. Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).
  17. J. C. Knight, T. A. Birks, P. S. J. Russell, and J. P. De Sandro, “Properties of photonic crystal fiber and the effective index model,” J. Opt. Soc. Am. A 15, 748–752 (1998).
    [CrossRef]
  18. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  19. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
    [CrossRef]

2009 (4)

2008 (3)

2007 (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

2006 (2)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

2005 (2)

2004 (1)

2003 (1)

2002 (2)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

1998 (1)

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent Terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Abbott, D.

Adam, A. J. L.

Afshar, S. V.

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Argyros, A.

Atakaramians, S.

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Bang, O.

Bartel, T.

Beere, H. E.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Beltram, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Birks, T. A.

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Davies, A. G.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

De Sandro, J. P.

Dupuis, A.

Ebendorff-Heidepriem, H.

Elsaesser, T.

Estacio, E.

Fischer, B. M.

Gaal, P.

George, R.

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Harrington, J. A.

Hassani, A.

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent Terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Inoue, H.

Iotti, R. C.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Jeon, S. G.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Jepsen, P. U.

Jin, Y. S.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Kawase, K.

Kim, G. J.

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Knight, J. C.

Köhler, R.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Large, M. C. J.

Leonhardt, R.

Linfield, E. H.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Lo, Y. H.

Mendis, R.

Mittleman, D. M.

Monro, T. M.

Mueller, E.

Nagel, M.

Nahata, A.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent Terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Nielsen, K.

Ogawa, Y.

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Pedersen, P.

Planken, P. C. M.

Pobre, R.

Ponseca, C. S.

Rasmussen, H. K.

Reimann, K.

Ritchie, D. A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Rossi, F.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Russell, P. S. J.

Sarukura, N.

Skorobogatiy, M.

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Tredicucci, A.

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Van Eijkelenborg, M. A.

Wang, K.

Watanabe, Y.

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent Terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Woerner, M.

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent Terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

J. Korean Phys. Soc. (1)

Y. S. Jin, G. J. Kim, and S. G. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

Nature (2)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597–600 (2006).
[CrossRef] [PubMed]

R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159(2002).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Other (2)

http://www.zeonex.com.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Zeonex phase refractive index (dots, left hand axis), and loss (circles, right hand axis) properties measured with the THz-TDS setup. The Sellmeier equation with three terms is used to fit the measured index data (solid line), while a quadratic fit to the attenuation data (dashed line) serves as a guide to the eyes. Inset shows the THz spectrum used in the experiment. (b) Micrograph of the Zeonex fiber with a core diameter of about 400 μm .

Fig. 2
Fig. 2

(a) Temporal signals at the photoconductive antenna recorded at the lock-in amplifier for the (i) reference with lenses only, and lenses with fiber lengths of (ii)  20 mm , (iii)  40 mm , and (iv)  50 mm for the 4 mm outer diameter fiber. Red-dotted lines plotted on (ii-iv) are the reconstructed temporal signals calculated from the experimentally determined fiber phase index with the frequency-dependent loss and coupling efficiencies smoothed over a frequency range of 0.2 to 1.2 THz . (b) Mode profiles (logarithmic scale, 3 orders of magnitude) simulated at 0.4 and 1.0 THz for 3 mm outer diameter Zeonex fiber.

Fig. 3
Fig. 3

Frequency-dependent loss coefficient obtained from the experimental measurements of 3 mm outer diameter fiber (dots) plotted along with the material absorption (dashed line).

Fig. 4
Fig. 4

Frequency-dependent coupling efficiency obtained from measurements of the 3 mm outer diameter fiber with s - p lenses. Top horizontal axis is the relative size of propagating wavelengths with respect to the core diameter, D, of 400 μm . Horizontal dashed line at 0.8 of coupling efficiency is the estimated maximal coupling efficiency taking into account the Fresnel reflections at fiber ends. Error bars represent 1 standard deviation between several scans of the five different lengths of the fiber.

Fig. 5
Fig. 5

(a) Single-mode phase index of the 4 mm outer diameter fiber as measured (circles), the fit from the model function (dashed line), the simulated index from MODE simulations (squares), and the calculated index from the EIM (solid line). (b) Group velocity dispersion parameter, β 2 , where its value is calculated from the phase index that is measured (circles), fitted by the model function (dashed line), simulated using MODE simulations (squares), and from the EIM (solid line).

Metrics