Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Wavelength-selective infrared absorptance of heavily doped silicon complex gratings with geometric modifications

Not Accessible

Your library or personal account may give you access

Abstract

Wavelength-selective infrared (IR) absorptance of modified complex gratings of heavily doped silicon with nanoscale features is studied by a finite-difference time-domain numerical scheme. The purpose of this work is to demonstrate the possibility of using complex gratings and nanoscale surface features to modify far-field radiative properties. By properly choosing the carrier concentration and geometry, silicon complex gratings exhibit a broadband absorptance peak resulting from the excitation of surface plasmon polaritons. Meanwhile, the absorptance of four modified complex gratings with attached features has been numerically investigated for their impact. First, the first peaks of the absorptance spectra of gratings due to Wood’s anomaly remain unchanged; the second peaks shift toward longer wavelengths in modified complex gratings, as compared with complex gratings without attached features. The modified complex gratings with attached features on both sides of the ridges have the most obvious effect on the absorptance spectral shift. Second, the spectral absorptance curves of complex gratings with square features in three sizes (100, 200, and 300nm) are compared and show that the peak wavelength shifts toward longer wavelengths with enlarged feature size. These combined effects of doped silicon, complex gratings, and the addition of submicrometer-sized features to grating side walls can be used for further tailoring thermal radiative properties, which may be very useful for enhancing the performance of IR detectors.

© 2011 Optical Society of America

Full Article  |  PDF Article
More Like This
Impacts of geometric modifications on infrared optical responses of metallic slit arrays

Yu-Bin Chen, Jia-Shiang Chen, and Pei-feng Hsu
Opt. Express 17(12) 9789-9803 (2009)

Infrared reflectance from a compound grating and its alternative componential gratings

Yu-Bin Chen and Ming-Jin Huang
J. Opt. Soc. Am. B 27(10) 2078-2086 (2010)

Optical responses from lossy metallic slit arrays under the excitation of a magnetic polariton

Chien-Jing Chen, Jia-Shiang Chen, and Yu-Bin Chen
J. Opt. Soc. Am. B 28(8) 1798-1806 (2011)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (11)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (9)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved