Abstract

We fabricate polymer compounds from titania-doped polyethylene and characterize their linear optical properties by terahertz time domain spectroscopy. We show that the high concentration of dopants not only enhances the refractive index of the composite material, but it also can dramatically raise its absorption coefficient. We demonstrate that the optimal design of photonic bandgap fibers based on lossy composites depends on finding a compromise between the high-refractive-index (hRI) contrast and corresponding material losses. Finally, fabrication and transmission measurements for the hRI contrast hollow-core Bragg fiber are reported and compared with simulations.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57(2010).
    [CrossRef] [PubMed]
  2. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
    [CrossRef]
  3. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601(2009).
    [CrossRef] [PubMed]
  4. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  5. A. Dupuis, J.-F. Allard, D. Morris, K. Stoeffler, C. Dubois, and M. Skorobogatiy, “Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,” Opt. Express 17, 8012–8028 (2009).
    [CrossRef] [PubMed]
  6. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz fibers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828 (2010).
    [CrossRef] [PubMed]
  7. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  8. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y. Huang, H. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
    [CrossRef] [PubMed]
  9. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2009).
    [CrossRef]
  10. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
    [CrossRef]
  11. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
    [CrossRef]
  12. M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
    [CrossRef]
  13. M. Skorobogatiy, “Efficient antiguiding of TE and TM polarizations in low-index core waveguides without the need for an omnidirectional reflector,” Opt. Lett. 30, 2991–2993(2005).
    [CrossRef] [PubMed]
  14. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196–1201 (1978).
    [CrossRef]
  15. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
    [CrossRef] [PubMed]
  16. O. Mitrofanov and J. A. Harrington, “Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion,” Opt. Express 18, 1898–1903 (2010).
    [CrossRef] [PubMed]

2010 (4)

2009 (5)

2008 (1)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

2007 (2)

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

2006 (1)

2005 (1)

2002 (1)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

1978 (1)

Adam, A. J. L.

Allard, J.-F.

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

Bang, O.

Chang, H.

Chen, H.-W.

Chen, L.-J.

Cho, M.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Désévédavy, F.

Dubois, C.

Dupuis, A.

Han, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

Hochrein, T.

Hsueh, Y.-C.

Huang, Y.

Jansen, C.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57(2010).
[CrossRef] [PubMed]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Jepsen, P. U.

Jördens, C.

Kao, T.-F.

Kim, J.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Koch, M.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57(2010).
[CrossRef] [PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Krumbholz, N.

Lai, C.-H.

Liu, T.-A.

Lu, J.-Y.

Marom, E.

Mazhorova, A.

Mitrofanov, O.

Mittleman, D. M.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Morris, D.

Nielsen, K.

Park, H.

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Peng, J.-L.

Peters, O.

Planken, P. C. M.

Rasmussen, H. K.

Rozé, M.

Rutz, F.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Salhi, M.

Scheller, M.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57(2010).
[CrossRef] [PubMed]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

Skorobogatiy, M.

Stoeffler, K.

Sun, C.-K.

Vieweg, N.

Wietzke, S.

C. Jansen, S. Wietzke, O. Peters, M. Scheller, N. Vieweg, M. Salhi, N. Krumbholz, C. Jördens, T. Hochrein, and M. Koch, “Terahertz imaging: applications and perspectives,” Appl. Opt. 49, E48–E57(2010).
[CrossRef] [PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Yariv, A.

Yeh, P.

You, B.

Appl. Opt. (1)

Appl. Phys. Lett. (4)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Phys. D: Appl. Phys. (1)

M. Scheller, S. Wietzke, C. Jansen, and M. Koch, “Modelling heterogeneous dielectric mixtures in the terahertz regime: a quasi-static effective medium theory,” J. Phys. D: Appl. Phys. 42, 065415 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (3)

Polym. Test. (1)

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polym. Test. 26, 614–618 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Hollow-core Bragg fiber with the reflector made of alternating hRI TiO 2 -doped PE layers and low-index pure PE layers. (a) Structure with 14 bilayers used in the T-matrix calculations. (b) Bragg fiber with five bilayers fabricated using a combination of film extrusion, hot pressing, and subsequent coiling.

Fig. 2
Fig. 2

Refractive index of a PE-based polymer compound as a function of weight concentration of TiO 2 particles: Bruggeman model fit (solid curve) [see Eq. (1)] and measurements at 1 THz (circles). Inset, THz-TDS measurements of the refractive index for pure PE (dashed curve), 40   wt. % (dotted curve), and 80   wt. % (solid curve) TiO 2 doping.

Fig. 3
Fig. 3

Power absorption loss of the doped PE-based polymer compound as a function of frequency (THz) for various levels of TiO 2 doping concentrations: 0   wt. % (pure PE), 40   wt. % , and 80   wt. % . Squares, circles, and triangles denote THz-TDS measurements, while the dashed, dotted and solid curves represent the corresponding polynomial fits [see Eq. (2)].

Fig. 4
Fig. 4

Fundamental mode loss in doped PE/PE hollow-core polymer Bragg fibers (14 bilayers) as a function of input frequency and for various levels of fractional nominal loss ( f loss ) inside the dielectric layers. Inset, calculated fundamental mode power profile at 1 THz .

Fig. 5
Fig. 5

Fundamental mode loss ( dB / m ) as a function of TiO 2 doping concentration of high-index layers and frequency, for an ideal Bragg fiber (five bilayers) whose reflector layer thicknesses are tuned to respect the quarter-wave condition [7] giving maximal bandgap size near the center frequency 1 THz .

Fig. 6
Fig. 6

Fundamental mode loss ( dB / m ) in 80   wt. % doped Bragg fiber (five bilayers) computed by the T-matrix method (dashed curve) with perfect circular symmetry and the FEM (dotted curve) with the spiral shape (shown inset). THz-TDS measurements of total attenuation (open circles), and theoretical calculations including coupling losses and intermodal interference effects (solid curve).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 f v = ε p ε m ε p ε h ε h ε m 3 ,
α m = f v ( a 1 ν 2 + a 2 ν + a 3 ) + a 4 ( cm 1 ) , ν = ( THz ) .

Metrics