Abstract

We report on the terahertz (THz) spectral characteristics of hollow-core THz Bragg fibers. Two types of high-index contrast Bragg fibers were fabricated: one based on the index contrast between a polymer and air, and the second based on the contrast between a pure polymer and a polymer composite doped with high-index inclusions. The THz transmission of these waveguides is compared to theoretical simulations of ideal and nonideal structures. Waveguide dispersion is low, and total loss measurements allow us to estimate an upper bound of 0.05cm1 for the power absorption coefficient of these waveguides in certain frequency bands. We discuss multimode regimes, coupling losses, fabrication difficulties, and how bending losses will ultimately be the discriminant between different THz waveguiding strategies.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
    [CrossRef]
  2. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
    [CrossRef]
  3. K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef] [PubMed]
  4. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
    [CrossRef] [PubMed]
  5. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Int. Opt. 19, 211–227 (2000).
    [CrossRef]
  6. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink,  “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779(2001).
    [CrossRef] [PubMed]
  7. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverseelectric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
    [CrossRef] [PubMed]
  8. J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
    [CrossRef] [PubMed]
  9. T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
    [CrossRef]
  10. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
    [CrossRef]
  11. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microwave Wireless Comp. Lett. 11, 444–446 (2001).
    [CrossRef]
  12. R. Mendis and D. M. Mittleman, “An ultra low loss THz waveguide,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CPDA5.
    [PubMed]
  13. E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).
  14. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
    [CrossRef]
  15. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
    [CrossRef] [PubMed]
  16. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601(2009).
    [CrossRef] [PubMed]
  17. Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
    [CrossRef]
  18. G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
    [CrossRef] [PubMed]
  19. C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
    [CrossRef] [PubMed]
  20. T. Hidaka, H. Minamide, H. Ito, J. Nishizawa, K. Tamura, and S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23, 2469–2473 (2005).
    [CrossRef]
  21. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, and C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34, 3457–3459 (2009).
    [CrossRef] [PubMed]
  22. C.-S. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
    [CrossRef] [PubMed]
  23. J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  24. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  25. R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
    [CrossRef]
  26. I. Bassett and A. Argyros, “Elimination of polarization degeneracy in round waveguides,” Opt. Express 10, 1342–1346 (2002).
    [PubMed]
  27. D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
    [CrossRef]
  28. W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
    [CrossRef]
  29. Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
    [CrossRef]
  30. S.-Z. A. Lo and T. E. Murphy, “Nanoporous silicon multilayers for terahertz filtering,” Opt. Lett. 34, 2921–2923 (2009).
    [CrossRef] [PubMed]
  31. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
    [PubMed]
  32. C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.
  33. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000).
    [CrossRef] [PubMed]
  34. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17, 2039–2041 (1999).
    [CrossRef]
  35. Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).
  36. A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz bers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828(2010).
    [CrossRef] [PubMed]
  37. M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding, (Cambridge University Press, 2009).
  38. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977).
    [CrossRef]
  39. S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
    [CrossRef]
  40. S. Guo, S. Albin, and R. S. Rogowski, “Comparative analysis of Bragg fibers,”,Opt. Express 12,198–207 (2004).
    [CrossRef] [PubMed]
  41. K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
    [CrossRef]
  42. Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758 (2000).
    [CrossRef]
  43. D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
    [CrossRef]
  44. M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode bers. Application to the hollow-core photonic bandgap fibers,” Opt. Express 16, 14945–14953 (2008).
    [CrossRef] [PubMed]
  45. S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel–Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17, 1571–1576 (2009).
    [CrossRef] [PubMed]

2010 (3)

2009 (6)

2008 (10)

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

C. S. Ponseca, R. Pobre, E. Estacio, N. Sarukura, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, “Transmission of terahertz radiation using a microstructured polymer optical fiber,” Opt. Lett. 33, 902–904 (2008).
[CrossRef] [PubMed]

G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[CrossRef] [PubMed]

M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode bers. Application to the hollow-core photonic bandgap fibers,” Opt. Express 16, 14945–14953 (2008).
[CrossRef] [PubMed]

2007 (6)

T. Ito, Y. Matsuura, M. Miyagi, H. Minamide, and H. Ito, “Flexible terahertz fiber optics with low bend-induced losses,” J. Opt. Soc. Am. B 24, 1230–1235 (2007).
[CrossRef]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

2006 (2)

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, and C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308–310 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (3)

2002 (3)

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

I. Bassett and A. Argyros, “Elimination of polarization degeneracy in round waveguides,” Opt. Express 10, 1342–1346 (2002).
[PubMed]

2001 (2)

2000 (3)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Int. Opt. 19, 211–227 (2000).
[CrossRef]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000).
[CrossRef] [PubMed]

Y. Xu, R. K. Lee, and A. Yariv, “Asymptotic analysis of Bragg fibers,” Opt. Lett. 25, 1756–1758 (2000).
[CrossRef]

1999 (1)

1977 (1)

Abbott, D.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Adam, A. J.

Ajji, A.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Albin, S.

Argyros, A.

Astley, V.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
[PubMed]

Bai, X.-Z.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Bang, O.

Bassett, I.

Boismenu, F.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Bowden, B.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

Cardellino, J. D.

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Chang, H.-C.

Chen, C.

Chen, H.-W.

Chen, L.-J.

Cho, M.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Chuen, M. O. L.

Cravener, K. T.

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Désévédavy, F.

Dobbertin, T.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Dubois, C.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Dupuis, A.

Engeness, T. D.

Estacio, E.

Fan, S.

Feather, K. R.

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Fink, Y.

Fischer, B. M.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Geng, Y. F.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

George, R.

Gong, Y.

Grischkowsky, D.

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microwave Wireless Comp. Lett. 11, 444–446 (2001).
[CrossRef]

Guo, N.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Guo, S.

Han, H.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Han, Y.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

Harrington, J. A.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef] [PubMed]

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Int. Opt. 19, 211–227 (2000).
[CrossRef]

Helbig, J.

C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.

Helm, M.

Hidaka, T.

Hong, C.-S.

Hsueh, Y.-C.

Hu, J.-J.

Huang, Y.-J.

Ibanescu, M.

Ichikawa, S.

Ito, H.

Ito, T.

Jacobs, S. A.

Jang, J. S.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

Jansen, C.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
[PubMed]

Jeon, S.-Y.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Jeon, T.-I.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

Jepsen, P. U.

Ji, Y. B.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

Jin, Y.-S.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Joannopoulos, J. D.

Johnson, S. G.

Jung, E.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

Kammoun, A.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Kao, T.-F.

Kim, G.-J.

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

Kim, J.

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Kim, S. H.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

Knobloch, P.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Koch, M.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
[PubMed]

Koshiba, M.

Lai, C.-H.

Lai, C.-S.

Large, M. C. J.

Lee, E. S.

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

Lee, R. K.

Li, Y.-T.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Liu, T.-A.

Lo, S.-Z. A.

Lu, J.-Y.

Matsuura, Y.

Mazhorova, A.

Mendis, R.

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverseelectric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef] [PubMed]

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microwave Wireless Comp. Lett. 11, 444–446 (2001).
[CrossRef]

R. Mendis and D. M. Mittleman, “An ultra low loss THz waveguide,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CPDA5.
[PubMed]

Minamide, H.

Miskovsky, N. M.

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Mitrofanov, O.

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

Mittleman, D. M.

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverseelectric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef] [PubMed]

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

R. Mendis and D. M. Mittleman, “An ultra low loss THz waveguide,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CPDA5.
[PubMed]

C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
[PubMed]

Mittleman, M.

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Miyagi, M.

Moon, K.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

Mueller, E.

Murphy, T. E.

Neubauer, F.

C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.

Nielsen, K.

Nishizawa, J.

Pan, C.-L.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Park, H.

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

Paulose, V.

Pedersen, P.

Peng, J.-L.

Peter, F.

Planken, P. C.

Pobre, R.

Ponseca, C. S.

Rasmussen, H. K.

Ren, G.

Ripin, D. J.

Rogowski, R. S.

Rozé, M.

Rutz, F.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

Saitoh, K.

Sarukura, N.

Schneider, H.

Shum, P.

Skorobogatiy, M.

Soljacic, M.

Stoeffler, K.

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Sun, C.-K.

Tamura, K.

Tan, X. L.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Thomas, E. L.

Tian, Z.-G.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

Turchinovich, D.

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

van Eijkelenborg, M. A.

Wang, G.

Wang, K.

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Wang, P.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Weisberg, O.

Weisel, G. J.

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Wietzke, S.

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
[PubMed]

Winnerl, S.

Withayachumnankul, W.

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Wu, C.-Q.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Xu, Y.

Yang, J.

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding, (Cambridge University Press, 2009).

Yao, J. Q.

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Yariv, A.

Yeh, P.

You, B.

Yu, C.-P.

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Yu, R.-J.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Yu, X.

Zhang, B.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Zhang, Y.-Q.

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

Zimmerman, D. T.

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Zimmermann, B.

Appl. Phys. A (1)

D. Turchinovich, A. Kammoun, P. Knobloch, T. Dobbertin, and M. Koch, “Flexible all-plastic mirrors for the THz range,” Appl. Phys. A 74, 291–293 (2002).
[CrossRef]

Appl. Phys. B (1)

Y. F. Geng, X. L. Tan, P. Wang, and J. Q. Yao, “Transmission loss and dispersion in plastic terahertz photonic band-gap fibers,” Appl. Phys. B 91, 333–336 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

J.-Y. Lu, C.-P. Yu, H.-C. Chang, H.-W. Chen, Y.-T. Li, C.-L. Pan, and C.-K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002).
[CrossRef]

D. T. Zimmerman, J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, and G. J. Weisel, “Microwave absorption in percolating metal-insulator composites,” Appl. Phys. Lett. 93, 214103 (2008).
[CrossRef]

Fiber Int. Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Int. Opt. 19, 211–227 (2000).
[CrossRef]

IEEE Microwave Wireless Comp. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microwave Wireless Comp. Lett. 11, 444–446 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R.-J. Yu, B. Zhang, Y.-Q. Zhang, C.-Q. Wu, Z.-G. Tian, and X.-Z. Bai, “Proposal for ultralow loss hollow-core plastic Bragg fiber with cobweb-structured cladding for terahertz waveguiding,” IEEE Photon. Technol. Lett. 19, 910–912 (2007).
[CrossRef]

J. Appl. Phys. (1)

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Fabrication of terahertz hollow-glass metallic waveguides with inner dielectric coatings,” J. Appl. Phys. 104, 093110 (2008).
[CrossRef]

J. Korean Phys. Soc. (3)

E. S. Lee, J. S. Jang, S. H. Kim, Y. B. Ji, and T.-I. Jeon, “Propagation of single-mode and multi-mode terahertz radiation through a parallel-plate waveguide,” J. Korean Phys. Soc. 53, 1891–1896(2008).

Y. Han, M. Cho, H. Park, K. Moon, E. Jung, and H. Han, “Terahertz time-domain spectroscopy of ultra-high reflectance photonic crystal mirrors,” J. Korean Phys. Soc. 55, 508–511 (2009).
[CrossRef]

Y.-S. Jin, G.-J. Kim, and S.-Y. Jeon, “Terahertz dielectric properties of polymers,” J. Korean Phys. Soc. 49, 513–517(2006).

J. Lightwave Technol. (2)

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photon. 1, 97–105 (2007).
[CrossRef]

Nature (1)

K. Wang and M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

W. Withayachumnankul, B. M. Fischer, and D. Abbott, “Quarter-wavelength multilayer interference filter for terahertz waves,” Opt. Commun. 281, 2374–2379 (2008).
[CrossRef]

Opt. Express (12)

M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7–12 (2008).
[CrossRef] [PubMed]

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink,  “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9, 748–779(2001).
[CrossRef] [PubMed]

I. Bassett and A. Argyros, “Elimination of polarization degeneracy in round waveguides,” Opt. Express 10, 1342–1346 (2002).
[PubMed]

S. Guo, S. Albin, and R. S. Rogowski, “Comparative analysis of Bragg fibers,”,Opt. Express 12,198–207 (2004).
[CrossRef] [PubMed]

J. A. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263–5268 (2004).
[CrossRef] [PubMed]

G. Ren, Y. Gong, P. Shum, X. Yu, J.-J. Hu, G. Wang, M. O. L. Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593–13598 (2008).
[CrossRef] [PubMed]

M. Skorobogatiy, K. Saitoh, and M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode bers. Application to the hollow-core photonic bandgap fibers,” Opt. Express 16, 14945–14953 (2008).
[CrossRef] [PubMed]

S. Winnerl, B. Zimmermann, F. Peter, H. Schneider, and M. Helm, “Terahertz Bessel–Gauss beams of radial and azimuthal polarization from microstructured photoconductive antennas,” Opt. Express 17, 1571–1576 (2009).
[CrossRef] [PubMed]

K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601(2009).
[CrossRef] [PubMed]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverseelectric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009).
[CrossRef] [PubMed]

C.-S. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18, 309–322 (2010).
[CrossRef] [PubMed]

A. Dupuis, A. Mazhorova, F. Désévédavy, M. Rozé, and M. Skorobogatiy, “Spectral characterization of porous dielectric subwavelength THz bers fabricated using a microstructured molding technique,” Opt. Express 18, 13813–13828(2010).
[CrossRef] [PubMed]

Opt. Lett. (5)

Polym. Eng. Sci. (1)

K. Stoeffler, C. Dubois, A. Ajji, N. Guo, F. Boismenu, and M. Skorobogatiy, “Fabrication of all-plastic photonic bandgap Bragg fibers using rolling of PS/PMMA multilayer films,” Polym. Eng. Sci. 50, 1122–1127 (2010).
[CrossRef]

Polymer Testing (1)

S. Wietzke, C. Jansen, F. Rutz, D. M. Mittleman, and M. Koch, “Determination of additive content in polymeric compounds with terahertz time-domain spectroscopy,” Polymer Testing 26, 614–618 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70, 1325–1379 (2007).
[CrossRef]

Science (1)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415–419 (2000).
[CrossRef] [PubMed]

Other (4)

M. Skorobogatiy and J. Yang, Fundamentals of Photonic Crystal Guiding, (Cambridge University Press, 2009).

R. Mendis and D. M. Mittleman, “An ultra low loss THz waveguide,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CPDA5.
[PubMed]

C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, “Fully flexible terahertz bragg reflectors based on titania loaded polymers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuN1.
[PubMed]

C. Jansen, F. Neubauer, J. Helbig, D. M. Mittleman, and M. Koch, “Flexible Bragg reflectors for the terahertz regime composed of polymeric compounds,” in Proceedings of IEEE Joint 32th International Conference on Infrared and Millimeter Waves and 15th International Conference on Terahertz Electronics, (IEEE, 2007), pp. 984–986.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematization of the fabrication process of THz Bragg fibers. First column, air-polymer Bragg fiber. Second column, doped-polymer Bragg fiber. The ideal geometry is circularly symmetric; however, the rolling of films creates a spiral defect that breaks the symmetry. Cross-section pictures of the experimental fibers are also shown.

Fig. 2
Fig. 2

THz refractive index (a) and power absorp tion loss (b) of pure and TiO 2 -doped polyethylene films. Fabry–Perot oscillations due to the thickness of the samples can be seen. Absorption loss from the doped film can be approximated by a quadratic function.

Fig. 3
Fig. 3

Fabrication steps of a TiO 2 -doped polymer Bragg fiber. (a)–(c) Strips of TiO 2 film ( 400 μm thick) are pressed to a thinner thickness ( 100 μm ). (d)–(f) High- and low-index films are pressed together to form a bilayer. (g) defects in the bilayer. (h) Bilayer is rolled into a Bragg fiber.

Fig. 4
Fig. 4

Comparison of the THz-TDS transmission characteristics of air-polymer and doped-polymer Bragg fibers. Left column, air-polymer Bragg fiber. Right column, doped-polymer Bragg fiber. (a) Schematization of THz-TDS setup, (b) FWHM of input beam, (c), (d) time-domain scans, (e), (f) normalized amplitude transmission spectra, (g), (h) uipper bound on propagation loss given by total loss normalized with respect to waveguide length.

Fig. 5
Fig. 5

Comparison of the theoretical HE 11 mode propagation losses of a doped-polymer Bragg fiber with ideal (circular) and nonideal (spiral) geometry. The propagation losses in the case of the circular geometry are calculated using a transfer matrix method (TMM). The solid and dashed lines, respectively, correspond to simulations with and without material absorption. The propagation losses in the spiral geometry (circles and crosses) were calculated with a finite element method (FEM) mode solver. The dimensions and material parameters are described in the text. (a) Air-polymer Bragg fiber, (b) doped-polymer Bragg fiber. There is good agreement between the results indicating that the spiral defect does not significantly effect fiber losses. The similarities are further illustrated by comparing the power distribution and electric field orientation of the HE 11 mode in the spiral (c) and circular (d) geometries. The modes are seen to be nearly identical.

Fig. 6
Fig. 6

Theoretical modeling of the first few HE modes of an air-polymer Bragg fiber. (a) Power propagation loss coefficient α for the four first HE modes, compared to that of the TE 01 mode. Note that α includes the effects of absorption and radiation losses. (b)  β 2 dispersion parameter. (c) Power coupling coefficients | C | 2 for the first four HE modes. Dimensions of the simulated geometry are given in the text.

Fig. 7
Fig. 7

Theoretical modeling of the first few HE modes of a doped-polymer Bragg fiber. (a) Power propagation loss coefficient α for the four first HE modes, compared to that of the TE 01 mode. Note that α includes the effects of absorption and radiation losses. (b)  β 2 dispersion parameter. (c) Power coupling coefficients | C | 2 for the first four HE modes. Dimensions of the simulated geometry are given in the text.

Fig. 8
Fig. 8

Theoretical fit of the transmission through air-polymer and doped-polymer Bragg fibers. Parameters for the fits are taken from Figs. 6, 7. Complex oscillations within the spectra are explained by multimode interference [Eq. (2)].

Fig. 9
Fig. 9

TE and TM field decay rates per bilayer for quarter-wave planar Bragg reflectors. The quarter-wave condition is assumed to be satisfied for each of the designed angles of incidence θ d . Shown are the decay rates in two distinct regimes of operation. (a)  ϵ L ϵ H ϵ L + ϵ H < ϵ c , n C = 1.0 , n H = 1.5 . (b)  ϵ L ϵ H ϵ L + ϵ H > ϵ c , n C = 1.0 , n L = 1.5 , n H = 3.0 .

Fig. 10
Fig. 10

Band diagrams and field decay rates of doped-polymer planar Bragg reflectors ( ϵ L ϵ H ϵ L + ϵ H > ϵ c ). First column uses parameters of experimental Bragg fiber, second column uses a quarter-wave design at f = 0.49 THz and θ i = 0 . First row presents the band diagram of the reflectors. Second row presents λ-diagrams of the field decay rates within the bandgap regions. Third row presents cuts of the λ diagrams at constant frequencies.

Fig. 11
Fig. 11

Band diagrams and field decay rates of air-polymer planar Bragg reflectors where ϵ L = ϵ C ( ϵ L ϵ H ϵ L + ϵ H < ϵ c ) . First column uses parameters of experimental Bragg fiber, second column considers a 25 vol . % Cu-doped PE Bragg fiber. First row presents the band diagram of the reflectors. Second row presents λ diagrams of the field decay rates within the bandgap regions. Third row presents cuts of the λ diagrams at constant frequencies.

Fig. 12
Fig. 12

Propagation loss and dispersion parameter of the first few modes of the proposed Bragg fiber designs. First row, propagation losses α. Second row, β 2 dispersion parameter. First column, 25% Cu-doped PE doped-polymer Bragg fiber. Second column, high-index contrast air-polymer Bragg fiber.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

E w ( f ) = | E r ( f ) | · m C m in · C m out · e i ( n eff , m 1 ) 2 π f c L e α m L 2 ,
| T | = | E w ( f ) | | E r ( f ) | = | m | C m | 2 · e i ( n eff , m 1 ) 2 π f c L e α m L 2 | ,
λ 2 λ Γ TE , TM + 1 = 0 ,
Γ TE , TM = 2 cos ( ϕ L ) cos ( ϕ H ) ( r TE , TM + r TE , TM 1 ) sin ( ϕ L ) sin ( ϕ H ) ,
ϕ L = k z L d L , ϕ H = k z H d H ,
r TE = k z L k z H , r TM = ϵ H k z L ϵ L k z H ,
k z L = k 0 2 ϵ H k x 2 , k z L = k 0 2 ϵ H k x 2 ,
ϵ L = n L 2 , ϵ H = n H 2 ,
k x = n C k 0 sin ( θ i ) .
λ 1 = Γ TE , TM 2 + ( Γ TE , TM 2 ) 2 1 ,
λ 2 = Γ TE , TM 2 ( Γ TE , TM 2 ) 2 1 ,
λ 1 = e i k z a , λ 2 = e i k z a ,
λ 1 + λ 2 = 2 cos ( k z a ) ,
cos ( k z a ) = Γ TE , TM 2 .
λ TE = r TE < 1 , θ i [ 0 , π / 2 ]
ϵ L ϵ H ϵ L + ϵ H < ϵ c λ TM = { r TM 1 θ [ 0 , θ 0 ] r TM θ [ θ 0 , π / 2 ] ,
ϵ L ϵ H ϵ L + ϵ H > ϵ c λ TM = r TM 1 , θ [ 0 , π / 2 ]
θ 0 = arcsin ( ϵ L ϵ H ϵ C ( ϵ L + ϵ H ) ) ,

Metrics