Abstract

Interferometric determination of thermal expansion and of normalized thermo-optic coefficients of RbTiOPO4 at four laser wavelengths are performed as a function of temperature. A suitable vectorial formalism applied to obtained data allows the establishment of the temperature dependence of refractive indices, and subsequent theoretical analysis enables one to predict that an extremum in the evolution of the phase-matching direction in the (X,Y) plane should occur near 100°C for type II second harmonic generation of Nd:YAG lasers, with a temperature bandwidth that can be as large as 117°C for a crystal of 10mm in length. Such unusual behavior is observed experimentally by recording the conversion efficiency from 20°C up to 220°C for various propagation angles of light in the (X,Y) plane. Slight quadratic temperature dependence of the effective nonlinear coefficient is also observed.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
    [CrossRef]
  2. F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
    [CrossRef]
  3. A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
    [CrossRef]
  4. I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B 79, 77–81 (2004).
    [CrossRef]
  5. H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
    [CrossRef]
  6. J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
    [CrossRef]
  7. J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W(2008).
    [CrossRef]
  8. J. Mangin, G. Mennerat, G. Gadret, V. Badikov, and J.-C. de Miscault, “Comprehensive formulation of the temperature-dependent dispersion of optical materials: illustration with the case of temperature tuning of a mid-IR HgGa2S4 OPO,” J. Opt. Soc. Am. B 26, 1702–1709 (2009).
    [CrossRef]
  9. J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
    [CrossRef]
  10. I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
    [CrossRef]
  11. T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic-dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
    [CrossRef]
  12. L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
    [CrossRef]
  13. Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
    [CrossRef]
  14. Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
    [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  16. J. Q. Yao and T. S. Fahlen, “Calculation of optimum phase match parameters for the biaxial KTiOPO4,” J. Appl. Phys. 55, 65–68(1984).
    [CrossRef]
  17. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, “Second harmonic generation and accurate index of refraction measurements in flux-grown KTiOPO4,” Appl. Opt. 26, 2390–2394 (1987).
    [CrossRef] [PubMed]
  18. D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
    [CrossRef]
  19. K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper JWA11.
    [PubMed]

2009

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic-dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

J. Mangin, G. Mennerat, G. Gadret, V. Badikov, and J.-C. de Miscault, “Comprehensive formulation of the temperature-dependent dispersion of optical materials: illustration with the case of temperature tuning of a mid-IR HgGa2S4 OPO,” J. Opt. Soc. Am. B 26, 1702–1709 (2009).
[CrossRef]

2008

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W(2008).
[CrossRef]

2007

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

2005

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
[CrossRef]

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
[CrossRef]

2004

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B 79, 77–81 (2004).
[CrossRef]

2003

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

2001

D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
[CrossRef]

1994

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
[CrossRef]

1993

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

1987

1984

J. Q. Yao and T. S. Fahlen, “Calculation of optimum phase match parameters for the biaxial KTiOPO4,” J. Appl. Phys. 55, 65–68(1984).
[CrossRef]

Albrecht, H.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
[CrossRef]

Arie, A.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B 79, 77–81 (2004).
[CrossRef]

Badikov, V.

Betzler, K.

D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
[CrossRef]

Bierlein, J. D.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

Blachman, R.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
[CrossRef]

Bonnin, C.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
[CrossRef]

Bordui, P. F.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Boulanger, B.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
[CrossRef]

Byer, R. L.

Cheng, L. K.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

Cheng, L. T.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

Commandré, M.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

de Miscault, J.-C.

Dolev, I.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

Douady, J.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Eckardt, R. C.

Fahlen, T. S.

J. Q. Yao and T. S. Fahlen, “Calculation of optimum phase match parameters for the biaxial KTiOPO4,” J. Appl. Phys. 55, 65–68(1984).
[CrossRef]

Fan, T. Y.

Fan, Y. X.

Feigelson, R. S.

Fejer, M. M.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
[CrossRef]

Fève, J. P.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Fossier, S.

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
[CrossRef]

Frageman, A.

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Gadret, G.

J. Mangin, G. Mennerat, G. Gadret, V. Badikov, and J.-C. de Miscault, “Comprehensive formulation of the temperature-dependent dispersion of optical materials: illustration with the case of temperature tuning of a mid-IR HgGa2S4 OPO,” J. Opt. Soc. Am. B 26, 1702–1709 (2009).
[CrossRef]

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W(2008).
[CrossRef]

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
[CrossRef]

Galperin, J.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

Ganany-Padowicz, A.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

Gayer, O.

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

Gromfeld, Y.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
[CrossRef]

Guillien, Y.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Hellström, J.

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Herrmann, M. A.

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
[CrossRef]

Hesse, H.

D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
[CrossRef]

Hildenbrand, A.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

Hotsenpiller, P. A.

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

Hu, B. Q.

Huang, C. E.

Karlsson, H.

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Kato, K.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic-dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Kirshner, B.

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B 79, 77–81 (2004).
[CrossRef]

Lahlou-Kassi, L.

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Lammers, D.

D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
[CrossRef]

Laurell, F.

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Mangin, J.

J. Mangin, G. Mennerat, G. Gadret, V. Badikov, and J.-C. de Miscault, “Comprehensive formulation of the temperature-dependent dispersion of optical materials: illustration with the case of temperature tuning of a mid-IR HgGa2S4 OPO,” J. Opt. Soc. Am. B 26, 1702–1709 (2009).
[CrossRef]

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W(2008).
[CrossRef]

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
[CrossRef]

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Menaert, B.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Mennerat, G.

J. Mangin, G. Mennerat, G. Gadret, V. Badikov, and J.-C. de Miscault, “Comprehensive formulation of the temperature-dependent dispersion of optical materials: illustration with the case of temperature tuning of a mid-IR HgGa2S4 OPO,” J. Opt. Soc. Am. B 26, 1702–1709 (2009).
[CrossRef]

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W(2008).
[CrossRef]

Mikami, T.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic-dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Natoli, J.-Y.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

Nordborg, J.

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Okamoto, T.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic-dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Oseledchik, Y. S.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

Pacaud, O.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Pasiskevicius, V.

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

Pisarevsky, A. I.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

Prosvirnin, A. L.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

Segonds, P.

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Starshenko, V. V.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

Strimer, P.

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
[CrossRef]

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Svitanko, N. V.

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

Théodore, F.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

Wagner, F. R.

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

Xue, D.

D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
[CrossRef]

Yao, J. Q.

J. Q. Yao and T. S. Fahlen, “Calculation of optimum phase match parameters for the biaxial KTiOPO4,” J. Appl. Phys. 55, 65–68(1984).
[CrossRef]

Yutsis, I.

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B 79, 77–81 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. B

I. Yutsis, B. Kirshner, and A. Arie, “Temperature-dependent dispersion relations for RbTiOPO4 and RbTiOAsO4,” Appl. Phys. B 79, 77–81 (2004).
[CrossRef]

I. Dolev, A. Ganany-Padowicz, O. Gayer, A. Arie, J. Mangin, and G. Gadret, “Linear and nonlinear optical properties of MgO:LiTaO3,” Appl. Phys. B 96, 423–432 (2009).
[CrossRef]

Appl. Phys. Lett.

B. Boulanger, M. M. Fejer, R. Blachman, and P. F. Bordui, “Study of KTP gray-track at 1064, 532 and 355 nm,” Appl. Phys. Lett. 65, 2401–2403 (1994).
[CrossRef]

A. Frageman, V. Pasiskevicius, J. Nordborg, J. Hellström, H. Karlsson, and F. Laurell, “Frequency converters from visible to mid-infrared with periodically poled RbTiOPO4,” Appl. Phys. Lett. 83, 3090–3092 (2003).
[CrossRef]

IEEE J. Quantum Electron.

J. Mangin, G. Gadret, S. Fossier, and P. Strimer, “Phase-modulated temperature scanning interferometry for measurements of electro-optic coefficients: application to KTiOPO4,” IEEE J. Quantum Electron. 41, 1002–1006 (2005).
[CrossRef]

J. Appl. Phys.

J. Q. Yao and T. S. Fahlen, “Calculation of optimum phase match parameters for the biaxial KTiOPO4,” J. Appl. Phys. 55, 65–68(1984).
[CrossRef]

J. Cryst. Growth

L. K. Cheng, L. T. Cheng, J. Galperin, P. A. M. Hotsenpiller, and J. D. Bierlein, “Growth and characterization of KTiOPO4isomorphs from self-fluxes,” J. Cryst. Growth 137, 107–115(1994).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. Solids

D. Xue, K. Betzler, H. Hesse, and D. Lammers, “Temperature dependence of the dielectric response of lithium niobate,” J. Phys. Chem. Solids 62, 973–976 (2001).
[CrossRef]

Meas. Sci. Technol.

J. Mangin, P. Strimer, and L. Lahlou-Kassi, “An interferometric dilatometer for the determination of thermo-optic coefficients of NLO materials,” Meas. Sci. Technol. 4, 826–834 (1993).
[CrossRef]

Opt. Mater.

T. Mikami, T. Okamoto, and K. Kato, “Sellmeier and thermo-optic-dispersion formulas for RbTiOPO4,” Opt. Mater. 31, 1628–1630 (2009).
[CrossRef]

Y. S. Oseledchik, A. I. Pisarevsky, A. L. Prosvirnin, V. V. Starshenko, and N. V. Svitanko, “Nonlinear optical properties of the flux grown RbTiOPO4,” Opt. Mater. 3, 237–242(1994).
[CrossRef]

Y. Guillien, B. Menaert, J. P. Fève, P. Segonds, J. Douady, B. Boulanger, and O. Pacaud, “Crystal growth and refined Sellmeier equations over the complete transparency range of RbTiOPO4,” Opt. Mater. 22, 155–162(2003).
[CrossRef]

Proc. SPIE

J. Mangin, G. Gadret, and G. Mennerat, “Dispersion and temperature dependence of thermo-optic coefficients of optical materials over their whole transparency range: vectorial formalism and application to KTiOPO4,” Proc. SPIE 7102, 71020W(2008).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J.-Y. Natoli, M. Commandré, F. Théodore, and H. Albrecht, “Laser damage investigation in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals: threshold anisotropy and the influence of SHG,” Proc. SPIE 6720, 672015(2007).
[CrossRef]

H. Albrecht, C. Bonnin, Y. Gromfeld, and M. A. Herrmann, “Characterization of RbTiOPO4 crystal for electro-optic and non-linear applications,” Proc. SPIE 5990, 599004 (2005).
[CrossRef]

Other

M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).

K. Kato, T. Mikami, and T. Okamoto, “Sellmeier and thermo-optic dispersion formulas for RbTiOPO4,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper JWA11.
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Linear thermal expansion coefficient of RTP along the X axis: solid curve, this work; dotted and dashed curves from [3, 4], respectively.

Fig. 2
Fig. 2

Normalized thermo-optic coefficients of RTP at 20 ° C . This work, open circles correspond to experimental data (Table 1) and solid curves to Eq. (8). Dotted, dashed and dotted–dashed curves represent the fitting results deduced from previous works [10, 4, 3]; black, blue, and red colors refer to X, Y, and Z polarizations, respectively.

Fig. 3
Fig. 3

Doubling efficiency normalized to the largest peak value recorded at high temperature, as a function of temperature and for various selected propagation angles φ in the ( X , Y ) plane of RTP and for a crystal length L = 5.2 mm . Colored open triangles, circles, stars, lozenges, and squares are experimental data obtained at φ = 55.45 ° , 55.83 ° , 56.06 ° , 56.39 ° and, 56.70 ° , respectively. Solid curves drawn in same black, red, blue, violet, and green colors represent the theoretical predictions. The dashed curve corresponds to the optimized configuration for L = 5.2 mm , which occurs at T M = 95 ° C and φ M = 56.335 ° .

Fig. 4
Fig. 4

Experimentation analogous to that of Fig. 3, performed on a sample of 15 mm in length. Colored open squares, stars, and circles are experimental data obtained at φ = 55.90 ° , 55.61 ° , and 55.40 ° , respectively. Solid curves drawn in same, red, blue, and black colors represent the theoretical predictions. For illustration, solid curve in bold open black circles displays the optimized configuration calculated for a conventional crystal of 10 mm in length.

Fig. 5
Fig. 5

Predicted temperature dependence of the phase-matching angle in the ( X , Y ) plane of RTP for the SHG of Nd:YAG lasers. Solid curve, this work, along with open circles representing the polynomial fit (see Subsection 3B1); the dashed curve figures the result deduced from [11]. Black squares correspond to experimental maxima of efficiency recorded on both Figs. 3, 4.

Fig. 6
Fig. 6

Temperature dependence of the effective NLO coefficient for SHG 1.0642 μm 0.5321 μm in the ( X , Y ) plane of RTP. Open circles, values calculated from experimental data using Eq. (21) and d eff = 2.6 pm / V at 20 ° C ; dotted curve, quadratic fit, Eq. (22).

Fig. 7
Fig. 7

Temperature dependence of phase-matched SHG performed on a 12.4 mm length sample: open circles are experimental data [13]. Solid and dashed curves, fits from Eq. (12) using the dispersion equation given in [11] with φ = 55.332 ° and in [13] with φ = 55.685 ° , respectively.

Fig. 8
Fig. 8

Calculated temperature dependence of the phase-matching angle in the ( X , Y ) plane of RTP; solid and dashed curves are obtained starting from [10, 12], respectively.

Fig. 9
Fig. 9

Temperature dependence of the phase-matched grating periods for the SHG at 0.5321 μm in ppRTP. Open circles, experimental results [4]; solid, dashed, and dotted curves are the fits obtained starting from available dispersion equations reported in [11, 12, 13], respectively. Corresponding NTOCs were calculated in each case.

Tables (2)

Tables Icon

Table 1 Polynomial Fits of the Principal Linear Thermal Expansion and NTOCs of RbTiOPO 4 : α i ( resp β i ) = c 0 + c 1 T + c 2 T 2 a

Tables Icon

Table 2 Refractive Indices of RbTiOPO 4 [11]

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( λ , T ) = A ( T ) + p = 1 l B p ( T ) λ 2 λ p 2 ( T ) .
β ( λ , T ) = 1 2 n 2 ( λ , T 0 ) [ d A d T + p = 1 l 1 [ λ 2 λ p 2 ( T ) ] d B p ( T ) d T + i = 1 l 2 B p ( T ) λ p ( T ) [ λ 2 λ p 2 ( T ) ] 2 d λ p d T ] .
β ( λ , T ) = c 0 ( λ ) + c 1 ( λ ) T + .. + c m ( λ ) T m = 0 m c j ( λ ) T j .
c j ( λ ) = 1 2 n 2 ( λ , T 0 ) [ X 1 + p = 1 l 1 [ λ 2 λ p 2 ( T ) ] X p + p = 1 l 2 B p ( T ) λ p ( T ) [ λ 2 λ p 2 ( T ) ] 2 X p ] .
n ( λ , T ) = n ( λ , T 0 ) exp [ j = 0 m c j ( λ ) j + 1 ( T j + 1 T 0 j + 1 ) ] .
n i 2 = A i + p = 1 2 B i , p λ 2 λ i , p 2 .
β i ( λ , T ) = 1 2 n i 2 ( λ , T 0 ) [ d A i ( T ) d T + 1 [ λ 2 C i ( T 0 ) ] d B i , 1 ( T ) d T + B i , 1 ( T 0 ) [ λ 2 C i ( T 0 ) ] 2 d C i ( T ) d T + 1 [ λ 2 E i ( T 0 ) ] d B i , 2 ( T ) d T ] .
10 6 × β i ( λ , T ) = c 0 i ( λ ) + c 1 i ( λ ) T + c 2 i ( λ ) T 2 ,
c 0 x ( λ ) = 1 2 n x 2 ( λ , T 0 ) [ 58.4301133 + 6.07288812 ( λ 2 0.04750 ) + 0.0235581 ( λ 2 0.04750 ) 2 8383.255485 ( λ 2 130.7684 ) ] , c 1 x ( λ ) = 1 2 n x 2 ( λ , T 0 ) [ 0.8293467 0.01105364 ( λ 2 0.04750 ) + 0.00355983 ( λ 2 0.04750 ) 2 + 81.44602698 ( λ 2 130.7684 ) ] , c 2 x ( λ ) = 1 2 n x 2 ( λ , T 0 ) [ 0.0012434 0.00030399 ( λ 2 0.04750 ) + 0.00003605 ( λ 2 0.04750 ) 2 0.201565315 ( λ 2 130.7684 ) ] ,
c 0 y ( λ ) = 1 2 n y 2 ( λ , T 0 ) [ 62.4511021 + 8.91438141 ( λ 2 0.05130 ) 0.05895352 ( λ 2 0.05130 ) 2 9907.07483 ( λ 2 134.2832 ) ] , c 1 y ( λ ) = 1 2 n y 2 ( λ , T 0 ) [ 0.8717407 + 0.01046736 ( λ 2 0.05130 ) + 0.00317686 ( λ 2 0.05130 ) 2 + 82.428501 ( λ 2 134.2832 ) ] , c 2 y ( λ ) = 1 2 n y 2 ( λ , T 0 ) [ 0.0055007 0.00007373 ( λ 2 0.05130 ) + 0.00000488 ( λ 2 0.05130 ) 2 0.67622044 ( λ 2 134.2832 ) ] ,
c 0 z ( λ ) = 1 2 n z 2 ( λ , T 0 ) [ 102.760193 + 6.30709593 ( λ 2 0.05968 ) + 0.85521814 ( λ 2 0.05968 ) 2 + 17,770.81914 ( λ 2 269.8094 ) ] , c 1 z ( λ ) = 1 2 n z 2 ( λ , T 0 ) [ 1.9338609 + 0.11421781 ( λ 2 0.05968 ) 0.00255447 ( λ 2 0.05968 ) 2 + 420.54130735 ( λ 2 269.8094 ) ] , c 2 z ( λ ) = 1 2 n z 2 ( λ , T 0 ) [ 0.0084049 0.00057001 ( λ 2 0.05968 ) + 0.00002943 ( λ 2 0.05968 ) 2 2.25182362 ( λ 2 269.8094 ) ] ,
Δ k ( λ 0 , T , φ ) = 2 π λ 0 [ 2 n ( λ 0 / 2 , T , φ ) ( n ( λ 0 , T , φ ) + n z ( λ 0 , T ) ) ] ,
1 n 2 ( λ 0 , T ) = cos 2 φ n y 2 ( λ 0 , T ) + sin 2 φ n x 2 ( λ 0 , T ) .
n ( λ 0 / 2 , T , φ ) = 1 2 [ n ( λ 0 , T , φ ) + n z ( λ 0 , T ) ] .
d eff 2 n ( λ 0 / 2 , T , φ ) · n ( λ 0 , T , φ ) · n z ( λ 0 , T ) sin 2 [ Δ k ( λ 0 , T , φ ) · L ( T ) / 2 ] [ Δ k ( λ 0 , T , φ ) · L ( T ) / 2 ] 2 .
Δ k ( λ 0 , T , φ ) = Δ k T 0 , φ 0 + Δ k φ | T 0 , φ 0 δ φ + T [ Δ k T 0 , φ 0 + Δ k φ | T 0 , φ 0 δ φ ] δ T ,
n ( λ 0 ) φ = 1 2 n x ( λ 0 ) n y ( λ 0 ) [ n x 2 ( λ 0 ) n y 2 ( λ 0 ) ] sin 2 φ [ n x 2 ( λ 0 ) cos 2 φ + n y 2 ( λ 0 ) sin 2 φ ] 3 / 2 ,
n ( λ 0 ) T = [ n x 3 ( λ 0 ) cos 2 φ n y ( λ 0 ) T + n y 3 ( λ 0 ) sin 2 φ n x ( λ 0 ) T ] [ n x 2 ( λ 0 ) cos 2 φ + n y 2 ( λ 0 ) sin 2 φ ] 3 / 2 .
Δ k ( λ 0 , T , φ ) = Δ k T 0 , φ 0 + Δ k φ | T 0 , φ 0 δ φ + Δ k T 0 , φ 0 T δ T + T [ Δ k φ | T 0 , φ 0 δ φ ] δ T .
Δ k φ = 2 π sin 2 φ λ 0 [ n x , 2 ω n y , 2 ω ( n x , 2 ω 2 n y , 2 ω 2 ) ( n x , 2 ω 2 cos 2 φ + n y , 2 ω 2 sin 2 φ ) 3 / 2 1 2 n x , ω n y , ω ( n x , ω 2 n y , ω 2 ) ( n x , ω 2 cos 2 φ + n y , ω 2 sin 2 φ ) 3 / 2 ] ,
Δ k T = 2 π λ 0 [ 2 ( n x , 2 ω 2 cos 2 φ + n y , 2 ω 2 sin 2 φ ) 3 / 2 ( β y , 2 ω n x , 2 ω 2 cos 2 φ + β x , 2 ω n y , 2 ω 2 sin 2 φ ) 1 ( n x , ω 2 cos 2 φ + n y , ω 2 sin 2 φ ) 3 / 2 ( β y , ω n x , ω 2 cos 2 φ + β y , ω n y , ω 2 sin 2 φ ) n z , ω β z , ω ] ,
T ( Δ k φ ) = 2 π sin 2 φ λ 0 { n x , 2 ω n y , 2 ω [ 3 n x , 2 ω 2 n y , 2 ω 2 ( β x , 2 ω β y , 2 ω ) ( n x , 2 ω 2 cos 2 φ + n y , 2 ω 2 sin 2 φ ) ( n y , 2 ω 2 β x , 2 ω n x , 2 ω 2 β y , 2 ω ) ] ( n x , 2 ω 2 cos 2 φ + n y , 2 ω 2 sin 2 φ ) 5 / 2 1 2 n x , ω n y , ω [ 3 n x , ω 2 n y , ω 2 ( β x , ω β y , ω ) ( n x , ω 2 cos 2 φ + n y , ω 2 sin 2 φ ) ( n y , ω 2 β x , 2 ω n x , ω 2 β y , ω ) ] ( n x , ω 2 cos 2 φ + n y , ω 2 sin 2 φ ) 5 / 2 }
L ( T ) = L ( T 0 ) × exp T 0 T ( α x cos 2 φ 0 + α y sin 2 φ 0 ) d T .
d eff 2 ( T ) = d T M 2 [ 1 + 1.1316 × 10 4 ( T T M ) + 5 × 10 7 ( T 2 T M 2 ) ] .
d eff = 2.597 + 1.406 × 10 4 T + 7.19 × 10 7 T 2

Metrics