Abstract

BaAlBO3F2 (BABF), a newly developed nonlinear optical (NLO) crystal, was fully investigated for high-power harmonic generation of UV light. This was performed after successfully growing high-quality single crystals in the LiFB2O3NaF flux system. Thermal expansion, specific heat, transmittance spectrum, nonlinear optical coefficients, and laser damage threshold were measured. High-power NLO experiments were also conducted for what we believe to be the first time for BABF crystals. Because BABF is absolutely not hygroscopic, the appealing physical, chemical, optical, and NLO properties make BABF a promising NLO crystal for practical application in high-power UV light generation.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
    [CrossRef]
  2. C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).
  3. C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, and S. J. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
    [CrossRef]
  4. Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
    [CrossRef]
  5. L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
    [CrossRef]
  6. T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. T. Chen, C. Q. Zhang, Z. Y. Xu, and J. Y. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B 21, 370–375 (2004).
    [CrossRef]
  7. Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
    [CrossRef]
  8. Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of a new nonlinear optical crystal—BaAlBO3F2,” J. Cryst. Growth 260, 287–290 (2004).
    [CrossRef]
  9. H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
    [CrossRef]
  10. Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
    [CrossRef]
  11. Y. Zhou, Y. C. Yue, J. N. Wang, F. Yang, X. K. Cheng, D. F. Cui, Q. J. Peng, Z. G. Hu, and Z. Y. Xu, “Nonlinear optical properties BaAlBO3F2 crystal,” Opt. Express 17, 20033–20038(2009).
    [CrossRef] [PubMed]
  12. Y. Zhou, G. L. Wang, Y. C. Yue, C. M. Li, Y. F. Lu, D. F. Cui, Z. G. Hu, and Z. Y. Xu, “High-efficiency 355 nm generation in barium aluminum borate diflouride BaAlBO3F2,” Opt. Lett. 34, 746–748(2009).
    [CrossRef] [PubMed]
  13. Y. C. Yue, Z. G. Hu, and C. T. Chen, “Flux growth of BaAlBO3F2 crystals,” J. Cryst. Growth 310, 1264–1267 (2008).
    [CrossRef]
  14. L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
    [CrossRef]
  15. P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
    [CrossRef]
  16. J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
    [CrossRef]
  17. J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
    [CrossRef]
  18. P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties and orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
    [CrossRef]
  19. W. Herman and L. Hayden, “Maker fringes revisited: second-harmonic generation from birefringent or absorbing materials,” J. Opt. Soc. Am. B 12, 416–427 (1995).
    [CrossRef]
  20. X. Zhang, X. A. Wang, G. L. Wang, Y. C. Wu, Y. Zhu, and C. C. Chen, “Determination of the nonlinear optical coefficients of the LixCs(1−1x)B3O5 crystals,” J. Opt. Soc. Am. B 24, 2877–2882(2007).
    [CrossRef]

2009 (4)

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

Y. Zhou, Y. C. Yue, J. N. Wang, F. Yang, X. K. Cheng, D. F. Cui, Q. J. Peng, Z. G. Hu, and Z. Y. Xu, “Nonlinear optical properties BaAlBO3F2 crystal,” Opt. Express 17, 20033–20038(2009).
[CrossRef] [PubMed]

Y. Zhou, G. L. Wang, Y. C. Yue, C. M. Li, Y. F. Lu, D. F. Cui, Z. G. Hu, and Z. Y. Xu, “High-efficiency 355 nm generation in barium aluminum borate diflouride BaAlBO3F2,” Opt. Lett. 34, 746–748(2009).
[CrossRef] [PubMed]

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

2008 (1)

Y. C. Yue, Z. G. Hu, and C. T. Chen, “Flux growth of BaAlBO3F2 crystals,” J. Cryst. Growth 310, 1264–1267 (2008).
[CrossRef]

2007 (1)

2004 (2)

2002 (1)

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

2000 (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

1995 (1)

1993 (2)

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
[CrossRef]

1989 (1)

1985 (1)

C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).

1977 (1)

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties and orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

1970 (2)

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

1962 (1)

P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Bai, L.

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

Bechthold, P. S.

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties and orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Chen, C. C.

Chen, C. T.

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

Y. C. Yue, Z. G. Hu, and C. T. Chen, “Flux growth of BaAlBO3F2 crystals,” J. Cryst. Growth 310, 1264–1267 (2008).
[CrossRef]

T. Kanai, T. Kanda, T. Sekikawa, S. Watanabe, T. Togashi, C. T. Chen, C. Q. Zhang, Z. Y. Xu, and J. Y. Wang, “Generation of vacuum-ultraviolet light below 160 nm in a KBBF crystal by the fifth harmonic of a single-mode Ti:sapphire laser,” J. Opt. Soc. Am. B 21, 370–375 (2004).
[CrossRef]

L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
[CrossRef]

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, and S. J. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).

Chen, X.

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Cheng, X. K.

Cui, D. F.

Haussuhl, S.

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties and orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Hayden, L.

Herman, W.

Hu, Z.

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Hu, Z. G.

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

Y. Zhou, G. L. Wang, Y. C. Yue, C. M. Li, Y. F. Lu, D. F. Cui, Z. G. Hu, and Z. Y. Xu, “High-efficiency 355 nm generation in barium aluminum borate diflouride BaAlBO3F2,” Opt. Lett. 34, 746–748(2009).
[CrossRef] [PubMed]

Y. Zhou, Y. C. Yue, J. N. Wang, F. Yang, X. K. Cheng, D. F. Cui, Q. J. Peng, Z. G. Hu, and Z. Y. Xu, “Nonlinear optical properties BaAlBO3F2 crystal,” Opt. Express 17, 20033–20038(2009).
[CrossRef] [PubMed]

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

Y. C. Yue, Z. G. Hu, and C. T. Chen, “Flux growth of BaAlBO3F2 crystals,” J. Cryst. Growth 310, 1264–1267 (2008).
[CrossRef]

Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of a new nonlinear optical crystal—BaAlBO3F2,” J. Cryst. Growth 260, 287–290 (2004).
[CrossRef]

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

Huang, H.

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

Jerphagnon, J.

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

Jiang, A. D.

C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, and S. J. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).

Kamimura, T.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

Kanai, T.

Kanda, T.

Kurtz, S. K.

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

Li, C. M.

Li, R. K.

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, and S. J. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

Lin, S. J.

Lin, Z.

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Lin, Z. S.

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

Liu, C. L.

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

Liu, L. J.

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

Lu, Y. F.

Maker, P.

P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Mei, L. F.

L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
[CrossRef]

Mori, Y.

Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of a new nonlinear optical crystal—BaAlBO3F2,” J. Cryst. Growth 260, 287–290 (2004).
[CrossRef]

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

Muramatsu, K.

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

Nakai, S.

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Niseoff, M.

P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Peng, Q. J.

Sasaki, T.

Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of a new nonlinear optical crystal—BaAlBO3F2,” J. Cryst. Growth 260, 287–290 (2004).
[CrossRef]

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Savage, C.

P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Sekikawa, T.

Tang, H. G.

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Terhune, R.

P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Togashi, T.

Wang, G. L.

Wang, J.

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Wang, J. N.

Wang, J. Y.

Wang, X. A.

Wang, X. Y.

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

Wang, Y. B.

L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
[CrossRef]

Watanabe, S.

Wu, B. C.

L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
[CrossRef]

C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, and S. J. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).

Wu, Y. C.

Xu, Z. Y.

Yang, F.

Yao, J.

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Yap, Y. K.

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

Yokotani, A.

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

Yoshimura, M.

Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of a new nonlinear optical crystal—BaAlBO3F2,” J. Cryst. Growth 260, 287–290 (2004).
[CrossRef]

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

You, G. M.

C. T. Chen, Y. C. Wu, A. D. Jiang, B. C. Wu, G. M. You, R. K. Li, and S. J. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B 6, 616–621 (1989).
[CrossRef]

C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).

Yue, Y.

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Yue, Y. C.

Zhang, C. Q.

Zhang, X.

Zhou, Y.

Zhu, Y.

Appl. Phys. (1)

P. S. Bechthold and S. Haussuhl, “Nonlinear optical properties and orthorhombic barium formate and magnesium barium fluoride,” Appl. Phys. 14, 403–410 (1977).
[CrossRef]

Appl. Phys. Lett. (1)

Y. C. Wu, T. Sasaki, S. Nakai, A. Yokotani, H. G. Tang, and C. T. Chen, “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 2614–2615 (1993).
[CrossRef]

J. Appl. Phys. (3)

L. F. Mei, Y. B. Wang, C. T. Chen, and B. C. Wu, “Nonlinear optical materials based on MBe2BO3F2 (M=Na, K),” J. Appl. Phys. 74, 7014–7015 (1993).
[CrossRef]

H. Huang, Z. S. Lin, L. Bai, Z. G. Hu, and C. T. Chen, “Ab initio calculations on the borate nonlinear optical crystal BaAlBO3F2,” J. Appl. Phys. 106, 103107 (2009).
[CrossRef]

J. Jerphagnon and S. K. Kurtz, “Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41, 1667–1681 (1970).
[CrossRef]

J. Cryst. Growth (2)

Y. C. Yue, Z. G. Hu, and C. T. Chen, “Flux growth of BaAlBO3F2 crystals,” J. Cryst. Growth 310, 1264–1267 (2008).
[CrossRef]

Z. G. Hu, M. Yoshimura, Y. Mori, and T. Sasaki, “Growth of a new nonlinear optical crystal—BaAlBO3F2,” J. Cryst. Growth 260, 287–290 (2004).
[CrossRef]

J. Opt. Soc. Am. B (4)

Jpn. J. Appl. Phys. (1)

Z. G. Hu, M. Yoshimura, K. Muramatsu, Y. Mori, and T. Sasaki, “A new nonlinear optical crystal-BaAlBO3F2 (BABF),” Jpn. J. Appl. Phys. 41, 1131–1133 (2002).
[CrossRef]

Mater. Sci. Eng. R (1)

T. Sasaki, Y. Mori, M. Yoshimura, Y. K. Yap, and T. Kamimura, “Recent development of nonlinear optical borate crystals: key materials for generation of visible and UV light,” Mater. Sci. Eng. R 30, 1–54 (2000).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

J. Jerphagnon and S. K. Kurtz, “Optical nonlinear susceptibilities: accurate relative values for quartz, ammonium dihydrogen phosphate, and potassium dihydrogen phosphate,” Phys. Rev. B 1, 1739–1744 (1970).
[CrossRef]

Phys. Rev. Lett. (1)

P. Maker, R. Terhune, M. Niseoff, and C. Savage, “Effects of dispersion and focusing on the production of optical harmonics,” Phys. Rev. Lett. 8, 21–22 (1962).
[CrossRef]

Sci. Sin. Series B (1)

C. T. Chen, B. C. Wu, A. D. Jiang, and G. M. You, “A new-type ultraviolet SHG crystal: β-BaB2O4,” Sci. Sin. Series B 28, 235–243 (1985).

Solid State Sci. (1)

L. J. Liu, C. L. Liu, X. Y. Wang, Z. G. Hu, R. K. Li, and C. T. Chen, “Impact of Fe3+ on UV absorption of K2Al2B2O7 crystals,” Solid State Sci. 11, 841–844 (2009).
[CrossRef]

Other (1)

Z. Hu, Y. Yue, X. Chen, J. Yao, J. Wang, and Z. Lin, “Growth and structure redetermination of a nonlinear BaAlBO3F2 crystal,” Solid State Sci., doi: 10.1016/j.solidstatesciences.2011.03.002 (to be published).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

BABF crystal with dimensions of 55 mm × 50 mm × 30 mm grown by the MSSG technique.

Fig. 2
Fig. 2

Thermal expansion of two samples. Dilatation is defined as Δ L / L , where Δ L is the elongation or shrinkage of the sample and L is the length at room temperature.

Fig. 3
Fig. 3

Dependence of the specific heat of BABF.

Fig. 4
Fig. 4

Transmission spectrum of BABF crystal in the UV–VIS–NIR region.

Fig. 5
Fig. 5

Orientation of the c-cut BABF crystal to measure the Maker fringes of d 22 (BABF); E ω is the fundamental light; E 2 ω is the second-harmonic light.

Fig. 6
Fig. 6

Orientation of the [ 110 ] -cut KDP crystals to measure the Maker fringes of d 36 (KDP); E ω is the fundamental light; E 2 ω is the second-harmonic light.

Fig. 7
Fig. 7

Solid curve, experimental Maker fringe of d 22 (BABF); dashed curves, theoretical fringe and theoretical envelope.

Fig. 8
Fig. 8

Experimental setup of laser-induced damage threshold measurement.

Fig. 9
Fig. 9

SHG output power and conversion efficiency of BABF crystal at 1064 nm .

Fig. 10
Fig. 10

Experimental setup for 355 nm UV generation.

Fig. 11
Fig. 11

THG output power and conversion efficiency of BABF crystal at 1064 nm .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d eff ( type I ) = d 22 cos θ sin 3 φ ,
d eff ( type II ) = d 22 cos 2 θ cos 3 φ ,
n o 2 = 2.6213 + 0.01353 λ 2 0.01204 0.01055 λ 2 ,
n e 2 = 2.4833 + 0.01178 λ 2 0.00996 0.00447 λ 2 .

Metrics