Abstract

The outcoupling of light from AlGaAs-based light-emitting diodes (LEDs) can be improved by means of metal nanoparticles deposited on the surface of the device: light that would otherwise remain trapped in the high- refractive-index material by total internal reflection is scattered to the outside. We present an experimental study on the emission enhancement produced by single isolated gold nanoparticles of various sizes (60150nm in diameter) and compare the results with numerical simulations. We find a clear enhancement as long as the dipole plasmon resonance of the particle is at a shorter wavelength than the LED emission. If the plasmon resonance coincides with the LED emission or is at a larger wavelength, the enhancement turns into damping. The simulations indicate that this latter effect is mainly caused by the particle quadrupole resonance producing absorption.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
    [CrossRef]
  2. K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
    [CrossRef]
  3. Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
    [CrossRef]
  4. J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000).
    [CrossRef]
  5. M. D. Harries and H. D. Summers, “Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197–2199 (2006).
    [CrossRef]
  6. S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
    [CrossRef]
  7. D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
    [CrossRef] [PubMed]
  8. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  9. J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
    [CrossRef]
  10. G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
    [CrossRef]
  11. D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
    [CrossRef]
  12. T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
    [CrossRef]
  13. J. Renger, S. Grafström, L. M. Eng, and V. Deckert, “Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface,” J. Opt. Soc. Am. A 21, 1362–1367 (2004).
    [CrossRef]
  14. C. Haffner, Post-Modern Electrodynamics: Using Intelligent MaXwell Solvers (Wiley, 1999).
  15. P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2010 (1)

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

2008 (3)

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

2006 (2)

M. D. Harries and H. D. Summers, “Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197–2199 (2006).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

2004 (1)

2003 (1)

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
[CrossRef]

2002 (1)

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

2001 (1)

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

2000 (1)

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000).
[CrossRef]

1986 (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

1972 (1)

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Alaverdyan, Y.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Baek, J.-H.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Barbic, M.

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Bhat, R.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Borghs, G.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

Chen, C.-Y.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

Choe, J. H.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Christy, R. W.

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Constant, K.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Deckert, V.

Döhler, G. H.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Dutta, B.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Egawa, T.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Eng, L. M.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

J. Renger, S. Grafström, L. M. Eng, and V. Deckert, “Evanescent wave scattering and local electric field enhancement at ellipsoidal silver particles in the vicinity of a glass surface,” J. Opt. Soc. Am. A 21, 1362–1367 (2004).
[CrossRef]

Fukushima, Y.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Grafström, S.

Gray, S. K.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
[CrossRef]

Green, M.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

Haffner, C.

C. Haffner, Post-Modern Electrodynamics: Using Intelligent MaXwell Solvers (Wiley, 1999).

Harries, M. D.

M. D. Harries and H. D. Summers, “Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197–2199 (2006).
[CrossRef]

Härtling, T.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

Heremans, P.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Huang, C.-F.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Im, J. S.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
[CrossRef]

Johnson, P.

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Jung, T.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Käll, M.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

Kelso, S. M.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Kiesel, P.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Kim, D. H.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Kim, T. G.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Kuijk, M.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Kullock, R.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

Logan, R. A.

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000).
[CrossRef]

Lu, Y.-C.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

Meinlschmidt, S.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Mock, J. J.

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Orita, K.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Park, J.-M.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Park, Q. H.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

Renger, J.

Rooman, C.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Ryu, H.-Y.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Scherer, A.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000).
[CrossRef]

Schultz, D. A.

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Schultz, S.

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Shin, Y. C.

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

Smith, D. R.

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

Summers, H. D.

M. D. Harries and H. D. Summers, “Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197–2199 (2006).
[CrossRef]

Takase, Y.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Takigawa, S.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Tanaka, T.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

Ueda, D.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Ueda, T.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Usuda, M.

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Vuckovic, J.

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000).
[CrossRef]

Wenzel, M. T.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

Wiederrecht, G. P.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
[CrossRef]

Windisch, R.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Wurtz, G. A.

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
[CrossRef]

Yang, C. C.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

Yeh, D.-M.

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

Zhang, G.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

Zhao, J.

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

Zipperer, D.

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

Appl. Phys. Lett. (2)

R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Döhler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett. 79, 2315–2315 (2001).
[CrossRef]

S. Pillai, K. R. Catchpole, T. Trupke, G. Zhang, J. Zhao, and M. Green, “Enhanced emission from Si-based light-emitting diode using surface plasmon,” Appl. Phys. Lett. 88, 161102(2006).
[CrossRef]

IEEE J. Quantum Electron. (3)

K. Orita, Y. Takase, Y. Fukushima, M. Usuda, S. Takigawa, T. Tanaka, D. Ueda, T. Ueda, and T. Egawa, “Integration of photonic crystals on GaN-based blue LEDs using silicon mold substrates,” IEEE J. Quantum Electron. 44, 984–989 (2008).
[CrossRef]

Y. C. Shin, D. H. Kim, J.-M. Park, K. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J.-H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron. 46, 116–120 (2010).
[CrossRef]

J. Vuckovic, M. Loncar, and A. Scherer, “Surface plasmon enhanced light-emitting diode,” IEEE J. Quantum Electron. 36, 1131–1144 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. D. Harries and H. D. Summers, “Directional control of light-emitting-diode emission via a subwavelength-apertured metal surface,” IEEE Photon. Technol. Lett. 18, 2197–2199 (2006).
[CrossRef]

J. Appl. Phys. (1)

D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, “Optical properties of AlxGa1−xAs,” J. Appl. Phys. 60, 754–767 (1986).
[CrossRef]

J. Chem. Phys. (1)

J. J. Mock, M. Barbic, D. R. Smith, S. Schultz, and D. A. Schultz, “Shape effects in plasmon resonance of individual colloidal silver particles,” J. Chem. Phys. 116, 6755–6759 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

G. A. Wurtz, J. S. Im, S. K. Gray, and G. P. Wiederrecht, “Optical scattering from isolated metal nanoparticles and arrays,” J. Phys. Chem. B 107, 14191–14198 (2003).
[CrossRef]

J. Phys. Chem. C (1)

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[CrossRef]

Nanotechnology (1)

D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, and C. C. Yang, “Localized surface plasmon-induced emission enhancement of a green light-emitting diode,” Nanotechnology 19, 345201(2008).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Other (2)

C. Haffner, Post-Modern Electrodynamics: Using Intelligent MaXwell Solvers (Wiley, 1999).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. First, excitation by white light is used to identify a particle from its backscattering spectrum. Then, the white light is blocked, the LED is switched on, and the LED emission spectrum is recorded.

Fig. 2
Fig. 2

(a)–(d) Spectra of the reflected power measured with white light focused on individual MNPs of four different diameters (denoted on the left) embedded in immersion oil. The spectra have been normalized to the spectrum acquired on the bare LED surface close to the respective particle. The red-shaded area indicates the location of the LED emission peak. (e)–(h) Enhancement of the LED emission produced by the same MNPs. The right ordinate gives the effective cross section. (i) A 100 nm Au MNP appears dark at wavelengths < 640 nm , (j) whereas at longer wavelengths it produces a bright spot in the confocal image. (k) Schematic indicating the position and size of the particle (black dot) as well as the size of the detection area (shaded).

Fig. 3
Fig. 3

Cross sections of (a), (b) absorption and (c), (d) scattering of a 100 nm gold MNP embedded in immersion oil with a refractive index of n = 1.5 on a substrate with refractive index n = 3.5 , as calculated by means of MMP. The red-shaded area indicates the location of the LED emission peak in the experiment. The MNP was illuminated by a plane wave incident from the high-index material at various angles of incidence with either (a), (c) s or (b), (d) p polarization. Apart from the ordinary absorption of gold caused by the interband transition, the absorption is dominated by the quadrupole resonance of the particle, while the dipole resonance appears in the absorption spectrum only as a small redshifted shoulder. The scattering, on the other hand, is dominated by the dipole resonance with almost no contribution of the quadrupole resonance. In the case of p polarization, the dipole resonance exhibits a strong redshift close to and above the critical angle of total internal reflection ( 26 ° ).

Fig. 4
Fig. 4

Time-averaged Poynting vector distribution of the scattered field, as calculated by MMP (right) at the dipole resonance wavelength λ res for three different configurations (sketched on the left): (a) normal incidence ( λ res = 640 nm ), (b) s polarization at an angle of incidence α = 24 ° ( λ res = 640 nm ), and (c) p polarization at α = 24 ° ( λ res = 720 nm ). The incident, reflected, and refracted fields were subtracted from the total field to obtain the scattered field. All three field plots have the same color scaling and may be compared directly.

Metrics