Abstract

Light transmission through a finite photonic crystal waveguide with an embedded cavity is analyzed in terms of the optical conductance (OC). Under appropriate conditions, the transmission is inhibited for any angle of incidence. The resonance condition manifests itself as a “dip” in the OC. Just at the resonance, the power flow presents strong vortices inside the cavity.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
    [CrossRef]
  2. X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal,” Phys. Rev. E 71, 037601(2005).
    [CrossRef]
  3. Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
    [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
    [CrossRef]
  5. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  6. C.M.Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century, NATO ASI Series C: Mathematical and Physics Sciences (Kluwer Academic, 2001), Vol. 563.
  7. S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
    [CrossRef]
  8. R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
    [CrossRef]
  9. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
    [CrossRef]
  10. H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac, “Slow-light regime and critical coupling in highly multimode corrugated waveguides,” J. Opt. Soc. Am. B 25, C1–C14(2008).
    [CrossRef]
  11. S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
    [CrossRef]
  12. W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
    [CrossRef]
  13. H. I. Pérez, C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, “On the transmission of diffuse light through thick slits,” J. Opt. Soc. Am. A 26, 909–918 (2009).
    [CrossRef]
  14. H. Benisty,“Graphene nanoribbons: photonic crystal waveguide analogy and minigap stripes,” Phys. Rev. B 79, 155409 (2009).
    [CrossRef]
  15. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
    [CrossRef]
  16. V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
    [CrossRef]
  17. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
    [CrossRef]
  18. D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
    [CrossRef]
  19. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270 (2007).
    [CrossRef]
  20. I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
    [CrossRef]
  21. A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
    [CrossRef]
  22. M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009).
    [CrossRef]
  23. M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A: Pure Appl. Opt. 9, 81–87 (2007).
    [CrossRef]
  24. E.D.Palik, ed., Handbook of Optical Constants (Academic, 1985).
  25. J. A. Torres and J. J. Sáenz, “Improved generalized scattering matrix method: Conduction through ballistics nanowires,” J. Phys. Soc. Jpn. 73, 2182–2193 (2004).
    [CrossRef]
  26. A. García-Martín and J. J. Sáenz, “Statistical properties of wave transport through surface-desorder waveguides,” Waves Random Complex Media 15, 229–268 (2005).
    [CrossRef]
  27. R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
    [CrossRef] [PubMed]
  28. R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
    [CrossRef]
  29. T. Sondergaard and K. Dridi, “Energy flow in photonic crystal waveguide,” Phys. Rev. B 61, 15688–15696 (2000).
    [CrossRef]
  30. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
    [CrossRef]
  31. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
    [CrossRef] [PubMed]

2009 (4)

H. Benisty,“Graphene nanoribbons: photonic crystal waveguide analogy and minigap stripes,” Phys. Rev. B 79, 155409 (2009).
[CrossRef]

M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009).
[CrossRef]

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[CrossRef] [PubMed]

H. I. Pérez, C. I. Valencia, E. R. Méndez, and J. A. Sánchez-Gil, “On the transmission of diffuse light through thick slits,” J. Opt. Soc. Am. A 26, 909–918 (2009).
[CrossRef]

2008 (2)

H. Kurt, H. Benisty, T. Melo, O. Khayam, and C. Cambournac, “Slow-light regime and critical coupling in highly multimode corrugated waveguides,” J. Opt. Soc. Am. B 25, C1–C14(2008).
[CrossRef]

W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
[CrossRef]

2007 (4)

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A: Pure Appl. Opt. 9, 81–87 (2007).
[CrossRef]

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270 (2007).
[CrossRef]

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

2005 (3)

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal,” Phys. Rev. E 71, 037601(2005).
[CrossRef]

A. García-Martín and J. J. Sáenz, “Statistical properties of wave transport through surface-desorder waveguides,” Waves Random Complex Media 15, 229–268 (2005).
[CrossRef]

2004 (2)

J. A. Torres and J. J. Sáenz, “Improved generalized scattering matrix method: Conduction through ballistics nanowires,” J. Phys. Soc. Jpn. 73, 2182–2193 (2004).
[CrossRef]

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

2003 (1)

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

2001 (2)

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[CrossRef]

2000 (3)

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

T. Sondergaard and K. Dridi, “Energy flow in photonic crystal waveguide,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

1997 (1)

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[CrossRef]

1995 (3)

1994 (3)

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

Albaladejo, S.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[CrossRef] [PubMed]

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

Alerhard, O. L.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

Benisty, H.

Biswas, R.

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Blok, H.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Cambournac, C.

Chan, C. T.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

Chen, J. C.

Chutinan, A.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Dai, W.

W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
[CrossRef]

Depine, R.

M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009).
[CrossRef]

Devenyi, A.

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

Dridi, K.

T. Sondergaard and K. Dridi, “Energy flow in photonic crystal waveguide,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

El-Kady, I.

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Fan, S.

Froufe-Pérez, L. S.

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

García-Martín, A.

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

A. García-Martín and J. J. Sáenz, “Statistical properties of wave transport through surface-desorder waveguides,” Waves Random Complex Media 15, 229–268 (2005).
[CrossRef]

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

Gómez-Medina, R.

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

Ho, A.

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

Ho, K. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[CrossRef]

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Johnson, S. G.

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[CrossRef]

Kash, K.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

Khayam, O.

Kim, M.-K.

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Koschny, T.

W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
[CrossRef]

Kroll, N.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Kuramochi, E.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Kurt, H.

Kuzmiak, V.

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[CrossRef]

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

Lee, Y.-H.

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Lenstra, D.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Lester, M.

M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009).
[CrossRef]

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A: Pure Appl. Opt. 9, 81–87 (2007).
[CrossRef]

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

Luther-Davies, B.

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Madrazo, A.

Maradudin, A. A.

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[CrossRef]

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

Marqués, M. I.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[CrossRef] [PubMed]

Meade, R. D.

S. Fan, J. N. Winn, A. Devenyi, J. C. Chen, R. D. Meade, and J. D. Joannopoulos, “Guided and defect modes in periodic dielectric waveguides,” J. Opt. Soc. Am. B 12, 1267–1272 (1995).
[CrossRef]

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Mekis, A.

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[CrossRef]

Melo, T.

Méndez, E. R.

Mitsugi, S.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Nieto-Vesperinas, M.

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

A. Madrazo and M. Nieto-Vesperinas, “Scattering of electromagnetic waves from a cylinder in front of a conducting plane,” J. Opt. Soc. Am. A 12, 1298–1309 (1995).
[CrossRef]

Noda, S.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Pérez, H. I.

Pincemin, F.

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

Rahachou, A. I.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270 (2007).
[CrossRef]

Rode, A.

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Ruana, Y.

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

Sáenz, J. J.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[CrossRef] [PubMed]

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

A. García-Martín and J. J. Sáenz, “Statistical properties of wave transport through surface-desorder waveguides,” Waves Random Complex Media 15, 229–268 (2005).
[CrossRef]

J. A. Torres and J. J. Sáenz, “Improved generalized scattering matrix method: Conduction through ballistics nanowires,” J. Phys. Soc. Jpn. 73, 2182–2193 (2004).
[CrossRef]

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

San Jose, P.

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

Sánchez-Gil, J. A.

Scheffold, F.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[CrossRef] [PubMed]

Schouten, H. F.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Sigalas, M.

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Sigalas, M. M.

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

Skigin, D.

M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009).
[CrossRef]

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A: Pure Appl. Opt. 9, 81–87 (2007).
[CrossRef]

Smith, D. A.

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

Smith, D. R.

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Sondergaard, T.

T. Sondergaard and K. Dridi, “Energy flow in photonic crystal waveguide,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

Soukoulis, C. M.

W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
[CrossRef]

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

Torres, J. A.

J. A. Torres and J. J. Sáenz, “Improved generalized scattering matrix method: Conduction through ballistics nanowires,” J. Phys. Soc. Jpn. 73, 2182–2193 (2004).
[CrossRef]

Valencia, C. I.

Visser, T. D.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Wang, B.

W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
[CrossRef]

Winn, J. N.

Zhang, X.

X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal,” Phys. Rev. E 71, 037601(2005).
[CrossRef]

Zozoulenko, I. V.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270 (2007).
[CrossRef]

Appl. Phys. Lett. (4)

Y. Ruana, M.-K. Kim, Y.-H. Lee, B. Luther-Davies, and A. Rode, “Fabrication of high-Q chalcogenide photonic crystal resonators by e-beam lithography,” Appl. Phys. Lett. 90, 071102 (2007).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87, 151112 (2005).
[CrossRef]

S. Albaladejo, M. Lester, L. S. Froufe-Pérez, A. García-Martín, and J. J. Sáenz, “Optical conductance of waveguides built into finite photonic crystals,” Appl. Phys. Lett. 91, 061107 (2007).
[CrossRef]

D. R. Smith, S. Schultz, N. Kroll, M. Sigalas, K. M. Ho, and C. M. Soukoulis, “Experimental and theoretical results for two-dimensional metallic photonic band-gap cavity,” Appl. Phys. Lett. 65, 645–647 (1994)
[CrossRef]

Comput. Sci. Eng. (1)

S. G. Johnson, A. Mekis, S. Fan, and J. D. Joannopoulos, “Molding the flow of light,” Comput. Sci. Eng. 3, 38–47 (2001).
[CrossRef]

J. Appl. Phys. (1)

R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhard, D. A. Smith, and K. Kash, “Novel applications of photonic band gap materials: low-loss bends and high Q cavities,” J. Appl. Phys. 754753–4755 (1994).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (3)

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A: Pure Appl. Opt. 9, 265–270 (2007).
[CrossRef]

M. Lester, D. Skigin, and R. Depine, “Blaze produced by a dual period array of subwavelength cylinders,” J. Opt. A: Pure Appl. Opt. 11, 045705 (2009).
[CrossRef]

M. Lester and D. Skigin, “Coupling of evanescent s-polarized waves to the far field by waveguide modes in metallic arrays,” J. Opt. A: Pure Appl. Opt. 9, 81–87 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. Soc. Jpn. (1)

J. A. Torres and J. J. Sáenz, “Improved generalized scattering matrix method: Conduction through ballistics nanowires,” J. Phys. Soc. Jpn. 73, 2182–2193 (2004).
[CrossRef]

Nano Lett. (1)

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9, 3527–3531 (2009).
[CrossRef] [PubMed]

Phys. Rev. B (8)

T. Sondergaard and K. Dridi, “Energy flow in photonic crystal waveguide,” Phys. Rev. B 61, 15688–15696 (2000).
[CrossRef]

I. El-Kady, M. Sigalas, R. Biswas, A. Ho, and C. M. Soukoulis, “Metallic photonic crystal at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000).
[CrossRef]

W. Dai, B. Wang, T. Koschny, and C. M. Soukoulis, “Experimental verification of quantized conductance for microwave frequencies in photonic crystal waveguides,” Phys. Rev. B 78, 073109 (2008).
[CrossRef]

H. Benisty,“Graphene nanoribbons: photonic crystal waveguide analogy and minigap stripes,” Phys. Rev. B 79, 155409 (2009).
[CrossRef]

V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994).
[CrossRef]

V. Kuzmiak and A. A. Maradudin, “Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation,” Phys. Rev. B 55, 7427–7444 (1997).
[CrossRef]

M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52, 11744–11751 (1995).
[CrossRef]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488–4492 (2000).
[CrossRef]

Phys. Rev. E (2)

X. Zhang, “Subwavelength far-field resolution in a square two-dimensional photonic crystal,” Phys. Rev. E 71, 037601(2005).
[CrossRef]

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[CrossRef]

Phys. Rev. Lett. (2)

R. Gómez-Medina, P. San Jose, A. García-Martín, M. Lester, M. Nieto-Vesperinas, and J. J. Sáenz, “Resonant radiation pressure on neutral particles in a waveguide,” Phys. Rev. Lett. 86, 4275–4277 (2001).
[CrossRef] [PubMed]

R. Gómez-Medina and J. J. Sáenz, “Unusually strong optical interactions between particles in quasi-one-dimensional geometries,” Phys. Rev. Lett. 93, 243602 (2004).
[CrossRef]

Waves Random Complex Media (1)

A. García-Martín and J. J. Sáenz, “Statistical properties of wave transport through surface-desorder waveguides,” Waves Random Complex Media 15, 229–268 (2005).
[CrossRef]

Other (3)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

C.M.Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century, NATO ASI Series C: Mathematical and Physics Sciences (Kluwer Academic, 2001), Vol. 563.

E.D.Palik, ed., Handbook of Optical Constants (Academic, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scheme of the structure of a PCW of variable width illuminated by a Gaussian beam. The PCW presents symmetrical superficial defects.

Fig. 2
Fig. 2

OC G versus PCW width W / λ . Each PC with M = 6 and N = 10 . The black curve corresponds to a perfect PCW, and the curve with circles corresponds to a PCW with defects. G curves are obtained at fixed λ = 1.8 μm . Inset: transmission coefficient at normal incidence versus wavelength for a perfect photonic crystal slab (i.e., a perfect PCW with W = a ).

Fig. 3
Fig. 3

Near-field field intensity and power flow maps for different W / λ ratios: (a)  W / λ = 0.43 , (b)  W / λ = 0.8 (points A and B in Fig. 2). The incident wavelength is λ = 1800 nm , and the PCs are formed by Ag rods with r = 90 nm and period a = 600 nm .

Fig. 4
Fig. 4

Near-field field intensity and power flow maps for W / λ = 0.98 (point C in Fig. 2). (a) Normal incidence, (b)  θ 0 = 45 ° . The parameters are the same as in Fig. 3.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

G = k 2 π π / 2 π / 2 σ ( k , θ i ) cos θ i d θ i
k y , 1 = k 2 ( π W ) 2 = 2 π λ 1 ( λ 2 W ) 2 ,
Ψ n , m ( x , y ) sin ( n π y 3 a + δ ) sin ( m π ( x + W eff / 2 ) W eff )
k 2 ( n π 3 a + δ ) 2 + ( m π W eff ) 2 .

Metrics