Abstract

We demonstrate the independent lithographic mode tuning by changing the holes around the defect area of photonic crystal nanocavities containing light-emitting quantum dots. The data have been verified by the three- dimensional finite-difference time domain simulation. These findings can be applied to realize encoded particles with large coding capability (>105) for biosensing.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
    [CrossRef]
  2. S. Birtwell and H. Morgan, “Microparticle encoding technologies for high-throughput multiplexed suspension assays,” Integr. Biol. 1, 345–362 (2009).
    [CrossRef]
  3. B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
    [CrossRef]
  4. M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
    [CrossRef] [PubMed]
  5. R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010).
    [CrossRef]
  6. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
    [CrossRef] [PubMed]
  7. S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
    [CrossRef] [PubMed]
  8. S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
    [CrossRef]
  9. F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
    [CrossRef]
  10. S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
    [CrossRef] [PubMed]
  11. Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
    [CrossRef] [PubMed]
  12. M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003).
    [CrossRef]
  13. D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
    [CrossRef]
  14. L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
    [CrossRef]
  15. Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
    [CrossRef] [PubMed]
  16. F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
    [CrossRef] [PubMed]
  17. R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
    [CrossRef]
  18. K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
    [CrossRef]
  19. M. A. Dündar, E. C. I. Ryckebosch, R. Nötzel, F. Karouta, L. J. van IJzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
    [CrossRef] [PubMed]
  20. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
    [CrossRef] [PubMed]
  21. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [CrossRef]

2010 (6)

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010).
[CrossRef]

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

M. A. Dündar, E. C. I. Ryckebosch, R. Nötzel, F. Karouta, L. J. van IJzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
[CrossRef] [PubMed]

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
[CrossRef] [PubMed]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

2009 (5)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

S. Birtwell and H. Morgan, “Microparticle encoding technologies for high-throughput multiplexed suspension assays,” Integr. Biol. 1, 345–362 (2009).
[CrossRef]

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[CrossRef] [PubMed]

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
[CrossRef] [PubMed]

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
[CrossRef]

2006 (2)

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

2004 (2)

Z. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
[CrossRef] [PubMed]

S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

2003 (1)

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003).
[CrossRef]

2002 (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

2001 (1)

M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef] [PubMed]

2000 (1)

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Abstreiter, G.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
[CrossRef]

Ahn, K. H.

S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Anantathanasarn, S.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Arakawa, Y.

Baba, T.

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
[CrossRef] [PubMed]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Barbarin, Y.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Battersby, B. J.

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Bente, E. A. J. M.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Bhatia, S. N.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Birtwell, S.

S. Birtwell and H. Morgan, “Microparticle encoding technologies for high-throughput multiplexed suspension assays,” Integr. Biol. 1, 345–362 (2009).
[CrossRef]

Bramati, A.

Bryant, D.

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Chen, M. Y.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
[CrossRef] [PubMed]

Cingolani, R.

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

Cunin, F.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

De Vittorio, M.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

de Vries, T.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Dhar, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

Dorfner, D. F.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
[CrossRef]

Dündar, M. A.

Eijkemans, T. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Erickson, D.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[CrossRef] [PubMed]

Finley, J. J.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
[CrossRef]

Gao, X.

M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef] [PubMed]

Geluk, E. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Goddard, J. M.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[CrossRef] [PubMed]

Gu, Z.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Han, M.

M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef] [PubMed]

Hu, J.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Hürlimann, T.

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
[CrossRef]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Iwamoto, S.

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Jokerst, N.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

Karouta, F.

Kita, S.

Koh, J.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Li, Y. Yang

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Link, J. R.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Loncar, M.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003).
[CrossRef]

Luan, L.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

Mandal, S.

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[CrossRef] [PubMed]

Martiradonna, L.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

Matthews, D.

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Meada, S. O.

S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Meade, S. O.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
[CrossRef] [PubMed]

Meutermans, W.

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Miskelly, G. M.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
[CrossRef] [PubMed]

Morgan, H.

S. Birtwell and H. Morgan, “Microparticle encoding technologies for high-throughput multiplexed suspension assays,” Integr. Biol. 1, 345–362 (2009).
[CrossRef]

Nair, R. V.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010).
[CrossRef]

Nie, S.

M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef] [PubMed]

Nomura, M.

Nötzel, R.

M. A. Dündar, E. C. I. Ryckebosch, R. Nötzel, F. Karouta, L. J. van IJzendoorn, and R. W. van der Heijden, “Sensitivities of InGaAsP photonic crystal membrane nanocavities to hole refractive index,” Opt. Express 18, 4049–4056 (2010).
[CrossRef] [PubMed]

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Nozaki, K.

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16, 8174–8180 (2008).
[CrossRef] [PubMed]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Oei, Y. S.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Palit, S.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

Pisanello, F.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

Pompa, P. P.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

Qiu, M.

Qiu, Y.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003).
[CrossRef]

Qualtieri, A.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Royal, M.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

Ryckebosch, E. C. I.

Sabella, S.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

Sailor, M. J.

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
[CrossRef] [PubMed]

S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Satpati, B.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Scherer, A.

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003).
[CrossRef]

Schmedake, T. A.

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Smalbrugge, B.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Smit, M. K.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Smythe, M. L.

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Stomeo, T.

F. Pisanello, A. Qualtieri, T. Stomeo, L. Martiradonna, R. Cingolani, A. Bramati, and M. De Vittorio, “High-Purcell-factor dipolelike modes at visible wavelengths in H1 photonic crystal cavity,” Opt. Lett. 35, 1509–1511 (2010).
[CrossRef] [PubMed]

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

Su, J. Z.

M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef] [PubMed]

Sun, L.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Tanabe, K.

Trampert, A.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Trau, M.

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

Tyler, T.

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

van der Heijden, R. W.

van IJzendoorn, L. J.

van Otten, F. W. M.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

van Veldhoven, R. P. J.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Vecchio, G.

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

Vijaya, R.

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010).
[CrossRef]

Wolter, J. H.

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Xu, H.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Xu, M.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Yoon, M. S.

S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Zhang, Z.

Zhao, W.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Zhao, X.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Zhu, C.

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Adv. Mater. (2)

S. O. Meada, M. S. Yoon, K. H. Ahn, and M. J. Sailor, “Porous silicon photonic crystals as encoded microcarriers,” Adv. Mater. 16, 1811–1814 (2004).
[CrossRef]

Y. Zhao, X. Zhao, J. Hu, M. Xu, W. Zhao, L. Sun, C. Zhu, H. Xu, and Z. Gu, “Encoded porous beads for label-free multiplex detection of tumor markers,” Adv. Mater. 21, 569–572 (2009).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. O. Meade, M. Y. Chen, M. J. Sailor, and G. M. Miskelly, “Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles,” Anal. Chem. 81, 2618–2625 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

M. Loncar, A. Scherer, and Y. Qiu, “Photonic crystal laser sources for chemical detection,” Appl. Phys. Lett. 82, 4648–4650(2003).
[CrossRef]

D. F. Dorfner, T. Hürlimann, G. Abstreiter, and J. J. Finley, “Optical characterization of silicon on insulator photonic crystal nanocavities infiltrated with colloidal PbS quantum dots,” Appl. Phys. Lett. 91, 233111 (2007).
[CrossRef]

L. Martiradonna, F. Pisanello, T. Stomeo, A. Qualtieri, G. Vecchio, S. Sabella, R. Cingolani, M. De Vittorio, and P. P. Pompa, “Spectral tagging by integrated photonic crystal resonators for highly sensitive and parallel detection in biochips,” Appl. Phys. Lett. 96, 113702 (2010).
[CrossRef]

K. Nozaki and T. Baba, “Laser characteristics with ultimate-small modal volume in photonic crystal slab point-shift nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[CrossRef]

Integr. Biol. (1)

S. Birtwell and H. Morgan, “Microparticle encoding technologies for high-throughput multiplexed suspension assays,” Integr. Biol. 1, 345–362 (2009).
[CrossRef]

J. Am. Chem. Soc. (1)

B. J. Battersby, D. Bryant, W. Meutermans, D. Matthews, M. L. Smythe, and M. Trau, “Toward larger chemical libraries: encoding with fluorescent colloids in combinatorial chemistry,” J. Am. Chem. Soc. 122, 2138–2139 (2000).
[CrossRef]

J. Biophoton. (1)

N. Jokerst, M. Royal, S. Palit, L. Luan, S. Dhar, and T. Tyler, “Chip scale integrated microresonator sensing systems,” J. Biophoton. 2, 212–226 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

R. Nötzel, S. Anantathanasarn, R. P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, A. Trampert, B. Satpati, Y. Barbarin, E. A. J. M. Bente, Y. S. Oei, T. de Vries, E. J. Geluk, B. Smalbrugge, M. K. Smit, and J. H. Wolter, “Self assembled InAs/InP quantum dots for telecom applications in the 1.55 µmwavelength range: wavelength tuning, stacking, polarization control, and lasing,” Jpn. J. Appl. Phys. 45, 6544–6549(2006).
[CrossRef]

Lab Chip (1)

S. Mandal, J. M. Goddard, and D. Erickson, “A multiplexed optofluidic biomolecular sensor for low mass detection,” Lab Chip 9, 2924–2932 (2009).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

M. Han, X. Gao, J. Z. Su, and S. Nie, “Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules,” Nat. Biotechnol. 19, 631–635 (2001).
[CrossRef] [PubMed]

Nat. Mater. (1)

F. Cunin, T. A. Schmedake, J. R. Link, Y. Yang Li, J. Koh, S. N. Bhatia, and M. J. Sailor, “Biomolecular screening with encoded porous-silicon photonic crystals,” Nat. Mater. 1, 39–41(2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Prog. Quantum Electron. (1)

R. V. Nair and R. Vijaya, “Photonic crystal sensors: an overview,” Prog. Quantum Electron. 34, 89–134 (2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) SEM image of an H0_Y2 InGaAsP PhC nanocavity. Schematic diagrams for the PhC nanocavities of (b) H0_Y2, (c) H0_Y6, (d) H0_X2, (e) H0_X8, and (f) H0_X6. D x and D y are the modified hole diameters. S x and S y are the shifts of the modified holes.

Fig. 2
Fig. 2

(a) PL spectrums collected from a series of H0_Y2 cavities and the relation between the diameters of the varied holes and the mode positions of (b) H0_Y2, (c) H0_Y6, (d) H0_X2, (e) H0_X8, and (f) H0_X6 cavities. The inserts in (b) are the calculated modal profiles ( H z ) of the monopole and the dipole modes. The solid curves are the experimental results, while the dashed curves are the simulation results. Error bars represent average error introduced by the fabrication error, estimated from variations in resonance positions of different, but nominally identical, cavities.

Fig. 3
Fig. 3

Schematic diagrams for the PhC nanocavities of (a) H0_X6 + Y 6 and (b) H0_X8 + Y 2 . Relation between the diameters of the varied holes and the mode positions of (c) H0_X6 + Y 6 cavities and (d) H0_X8 + Y 2 cavities.

Fig. 4
Fig. 4

Schematic diagrams for the PhC nanocavities of (a) H1_X4 and (b) H1_X2. (c) Relation between the diameters of the varied holes and the mode positions of the H1_X4 cavities. (d) Relation between the shifts of the varied holes and the mode positions of the H1_X2 cavities. The inserts in (c) are the calculated modal profiles ( H z ) of the DX mode and the DY mode. The solid curves are the experimental results, while the dashed curves are the simulation results. Error bars represent average error introduced by the fabrication error, estimated from variations in resonance positions of different, but nominally identical, cavities.

Metrics