Abstract

The site-selective excitation and emission spectroscopy and luminescence decay (lifetime) have been investigated in the D05F07 region using a pulsed, tunable, and narrowband dye laser. We observed two crystallographic sites for Eu3+ in La2(MoO4)3 and one crystallographic site for Eu3+ in Gd2(MoO4)3. The stark energy levels for Eu3+ at different sites were assigned from site-selective emission spectra. The luminescent properties of the as- synthesized samples were also investigated, which showed strong lines at 395nm in excitation spectra and intensive red emission, indicating that they could be used as red components for white LEDs.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Sivakumar and U. V. Varadaraju, “Intense red phosphor for white LEDs based on blue GaN LEDs,” J. Electrochem. Soc. 153, H54–H57 (2006).
    [CrossRef]
  2. G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides,” J. Chem. Phys. 45, 2356–2360 (1966).
    [CrossRef]
  3. Y. R. Do and Y. D. Huh, “Optical properties of potassium europium tungstate phosphors,” J. Electrochem. Soc. 147, 4385–4388 (2000).
    [CrossRef]
  4. T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
    [CrossRef]
  5. X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
    [CrossRef]
  6. F. Lei and B. Yan, “Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W,Mo; RE=Eu,Tb) submicro-phosphors,” J. Solid State Chem. 181, 855–862 (2008).
    [CrossRef]
  7. S. Neeraj, N. Kijima, and A. K. Cheethanl, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd,Y,Bi),” Chem. Phys. Lett. 387, 2–6 (2004).
    [CrossRef]
  8. C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
    [CrossRef]
  9. E. H. Williams, “The magnetic properties of some rare earth oxides at low temperature,” Phys. Rev. 14, 348–351 (1919).
    [CrossRef]
  10. S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
    [CrossRef]
  11. Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
    [CrossRef]
  12. Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
    [CrossRef]
  13. P. M. Selzer, “Topics in applied physics” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer, 1981), pp. 141–143.
  14. W. Jeitschko, “Crystal structure of La2(MoO4)3, a new ordered defect scheelite type,” Acta Cryst. 29, 2074–2081 (1973).
    [CrossRef]
  15. L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
    [CrossRef]
  16. C. A. Kodaira, H. F. Brito, and O. L. Malta, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101, 11–21 (2003).
    [CrossRef]
  17. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
    [CrossRef]

2010 (2)

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

2008 (2)

F. Lei and B. Yan, “Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W,Mo; RE=Eu,Tb) submicro-phosphors,” J. Solid State Chem. 181, 855–862 (2008).
[CrossRef]

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

2007 (1)

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

2006 (1)

V. Sivakumar and U. V. Varadaraju, “Intense red phosphor for white LEDs based on blue GaN LEDs,” J. Electrochem. Soc. 153, H54–H57 (2006).
[CrossRef]

2005 (1)

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
[CrossRef]

2004 (1)

S. Neeraj, N. Kijima, and A. K. Cheethanl, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd,Y,Bi),” Chem. Phys. Lett. 387, 2–6 (2004).
[CrossRef]

2003 (1)

C. A. Kodaira, H. F. Brito, and O. L. Malta, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101, 11–21 (2003).
[CrossRef]

2000 (1)

Y. R. Do and Y. D. Huh, “Optical properties of potassium europium tungstate phosphors,” J. Electrochem. Soc. 147, 4385–4388 (2000).
[CrossRef]

1976 (1)

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

1973 (1)

W. Jeitschko, “Crystal structure of La2(MoO4)3, a new ordered defect scheelite type,” Acta Cryst. 29, 2074–2081 (1973).
[CrossRef]

1971 (1)

L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
[CrossRef]

1966 (1)

G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides,” J. Chem. Phys. 45, 2356–2360 (1966).
[CrossRef]

1919 (1)

E. H. Williams, “The magnetic properties of some rare earth oxides at low temperature,” Phys. Rev. 14, 348–351 (1919).
[CrossRef]

Bierstedt, P. E.

L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
[CrossRef]

Blasse, G.

G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides,” J. Chem. Phys. 45, 2356–2360 (1966).
[CrossRef]

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[CrossRef]

Brito, H. F.

C. A. Kodaira, H. F. Brito, and O. L. Malta, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101, 11–21 (2003).
[CrossRef]

Brixner, L. H.

L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
[CrossRef]

Chai, R. T.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Cheethanl, A. K.

S. Neeraj, N. Kijima, and A. K. Cheethanl, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd,Y,Bi),” Chem. Phys. Lett. 387, 2–6 (2004).
[CrossRef]

Chen, B. J.

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Chen, T.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

Cho, Y. S.

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Chou, T. W.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
[CrossRef]

Chuang, S. Z.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
[CrossRef]

Di, W. H.

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Do, Y. R.

Y. R. Do and Y. D. Huh, “Optical properties of potassium europium tungstate phosphors,” J. Electrochem. Soc. 147, 4385–4388 (2000).
[CrossRef]

Foner, S.

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[CrossRef]

Guo, C. F.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

Huang, D. X.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

Huh, Y. D.

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Y. R. Do and Y. D. Huh, “Optical properties of potassium europium tungstate phosphors,” J. Electrochem. Soc. 147, 4385–4388 (2000).
[CrossRef]

Jeitschko, W.

W. Jeitschko, “Crystal structure of La2(MoO4)3, a new ordered defect scheelite type,” Acta Cryst. 29, 2074–2081 (1973).
[CrossRef]

Kijima, N.

S. Neeraj, N. Kijima, and A. K. Cheethanl, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd,Y,Bi),” Chem. Phys. Lett. 387, 2–6 (2004).
[CrossRef]

Kim, D.

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Kodaira, C. A.

C. A. Kodaira, H. F. Brito, and O. L. Malta, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101, 11–21 (2003).
[CrossRef]

Lee, Y. J.

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Lei, F.

F. Lei and B. Yan, “Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W,Mo; RE=Eu,Tb) submicro-phosphors,” J. Solid State Chem. 181, 855–862 (2008).
[CrossRef]

Li, C. X.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Li, G. G.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Licis, M. S.

L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
[CrossRef]

Lin, J.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Liu, R. S.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
[CrossRef]

Luan, L.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

Malta, O. L.

C. A. Kodaira, H. F. Brito, and O. L. Malta, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101, 11–21 (2003).
[CrossRef]

Maple, M. B.

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

McCallum, R. W.

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

McNiff, E. J.

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

Meng, Q. Y.

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Mylswamy, S.

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
[CrossRef]

Neeraj, S.

S. Neeraj, N. Kijima, and A. K. Cheethanl, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd,Y,Bi),” Chem. Phys. Lett. 387, 2–6 (2004).
[CrossRef]

Peng, C.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Selzer, P. M.

P. M. Selzer, “Topics in applied physics” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer, 1981), pp. 141–143.

Shelton, R. N.

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

Sivakumar, V.

V. Sivakumar and U. V. Varadaraju, “Intense red phosphor for white LEDs based on blue GaN LEDs,” J. Electrochem. Soc. 153, H54–H57 (2006).
[CrossRef]

Sleight, A. W.

L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
[CrossRef]

Varadaraju, U. V.

V. Sivakumar and U. V. Varadaraju, “Intense red phosphor for white LEDs based on blue GaN LEDs,” J. Electrochem. Soc. 153, H54–H57 (2006).
[CrossRef]

Wang, X. J.

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Williams, E. H.

E. H. Williams, “The magnetic properties of some rare earth oxides at low temperature,” Phys. Rev. 14, 348–351 (1919).
[CrossRef]

Xu, Z. H.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Yan, B.

F. Lei and B. Yan, “Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W,Mo; RE=Eu,Tb) submicro-phosphors,” J. Solid State Chem. 181, 855–862 (2008).
[CrossRef]

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Yang, D. M.

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

Yang, H.

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Zhang, W.

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

Zhao, X. X.

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Acta Cryst. (1)

W. Jeitschko, “Crystal structure of La2(MoO4)3, a new ordered defect scheelite type,” Acta Cryst. 29, 2074–2081 (1973).
[CrossRef]

Bull. Korean Chem. Soc. (1)

Y. S. Cho, D. Kim, Y. J. Lee, H. Yang, and Y. D. Huh, “Preparation and photoluminescence properties of red-emitting Gd2(MoO4)3:Eu phosphors for a three-band white LED,” Bull. Korean Chem. Soc. 31, 2992–2994 (2010).
[CrossRef]

Chem. Phys. Lett. (1)

S. Neeraj, N. Kijima, and A. K. Cheethanl, “Novel red phosphors for solid-state lighting: the system NaM(WO4)2−x(MoO4)x:Eu3+ (M=Gd,Y,Bi),” Chem. Phys. Lett. 387, 2–6 (2004).
[CrossRef]

J. Chem. Phys. (1)

G. Blasse, “On the Eu3+ fluorescence of mixed metal oxides. IV. The photoluminescent efficiency of Eu3+-activated oxides,” J. Chem. Phys. 45, 2356–2360 (1966).
[CrossRef]

J. Electrochem. Soc. (2)

Y. R. Do and Y. D. Huh, “Optical properties of potassium europium tungstate phosphors,” J. Electrochem. Soc. 147, 4385–4388 (2000).
[CrossRef]

V. Sivakumar and U. V. Varadaraju, “Intense red phosphor for white LEDs based on blue GaN LEDs,” J. Electrochem. Soc. 153, H54–H57 (2006).
[CrossRef]

J. Lumin. (1)

C. A. Kodaira, H. F. Brito, and O. L. Malta, “Luminescence and energy transfer of the europium (III) tungstate obtained via the Pechini method,” J. Lumin. 101, 11–21 (2003).
[CrossRef]

J. Phys. Chem. C (1)

Z. H. Xu, C. X. Li, G. G. Li, R. T. Chai, C. Peng, D. M. Yang, and J. Lin, “Self-assembled 3D urchin-like NaY(MoO4)2:Eu3+/Tb3+ microarchitectures: hydrothermal synthesis and tunable emission colors,” J. Phys. Chem. C 114, 2573–2582 (2010).
[CrossRef]

J. Phys. Chem. Solids (1)

C. F. Guo, T. Chen, L. Luan, W. Zhang, and D. X. Huang, “Luminescent properties of R2(MoO4)3:Eu3+ (R=La,Y,Gd) phosphors prepared by sol–gel process,” J. Phys. Chem. Solids 69, 1905–1911 (2008).
[CrossRef]

J. Solid State Chem. (1)

F. Lei and B. Yan, “Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M=W,Mo; RE=Eu,Tb) submicro-phosphors,” J. Solid State Chem. 181, 855–862 (2008).
[CrossRef]

Mater. Res. Bull. (1)

L. H. Brixner, P. E. Bierstedt, A. W. Sleight, and M. S. Licis, “Precision parameters of some Ln2(MoO4)3-type rare earth molybdates,” Mater. Res. Bull. 6, 545–554 (1971).
[CrossRef]

Opt. Mater. (1)

X. X. Zhao, X. J. Wang, B. J. Chen, Q. Y. Meng, B. Yan, and W. H. Di, “Luminescent properties of Eu3+ doped α-Gd2(MoO4)3 phosphor for white light emitting diodes,” Opt. Mater. 29, 1680–1684 (2007).
[CrossRef]

Phys. Lett. A (1)

S. Foner, E. J. McNiff, R. N. Shelton, Jr., R. W. McCallum, and M. B. Maple, “Upper critical fields of superconducting rare-earth molybdenum selenides,” Phys. Lett. A 57, 345–346(1976).
[CrossRef]

Phys. Rev. (1)

E. H. Williams, “The magnetic properties of some rare earth oxides at low temperature,” Phys. Rev. 14, 348–351 (1919).
[CrossRef]

Solid State Commun. (1)

T. W. Chou, S. Mylswamy, R. S. Liu, and S. Z. Chuang, “Eu substitution and particle size control of Y2O2S for the excitation by UV light emitting diodes,” Solid State Commun. 136, 205–209 (2005).
[CrossRef]

Other (2)

P. M. Selzer, “Topics in applied physics” in Laser Spectroscopy of Solids, W.M.Yen and P.M.Selzer, eds. (Springer, 1981), pp. 141–143.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Excitation (left, λ em = 616 nm , from 200 to 550 nm ) and emission (right, λ ex = 395 nm , from 550 to 750 nm ) spectra of (a)  Gd 2 ( MoO 4 ) 3 : Eu 3 + and (b)  La 2 ( MoO 4 ) 3 : Eu 3 + phosphors.

Fig. 2
Fig. 2

Site-selective PL excitation spectra of La 2 ( MoO 4 ) 3 : Eu 3 + phosphors measured by monitoring at 616.01 nm .

Fig. 3
Fig. 3

High-resolution emission spectrum of La 2 ( MoO 4 ) 3 : Eu 3 + phosphors for the excitations at (a)  579.69 nm and (b)  579.93 nm , respectively.

Fig. 4
Fig. 4

Site-selective PL excitation spectra of Gd 2 ( MoO 4 ) 3 : Eu 3 + phosphors measured by monitoring at 616.50 nm .

Fig. 5
Fig. 5

High-resolution emission spectrum of Gd 2 ( MoO 4 ) 3 : Eu 3 + phosphors for the excitations at 580.64 nm .

Fig. 6
Fig. 6

Decay curves for the as-prepared samples: (a)  Gd 2 ( MoO 4 ) 3 : Eu 3 + (round circles, experimental data; red solid line, fitting results by I = I 0 exp ( t / τ ) , τ = 0.416 ms ) and (b)  La 2 ( MoO 4 ) 3 : Eu 3 + (round circles, experimental data; red solid line, fitting results by I = I 0 exp ( t / τ ) , τ = 0.448 ms ).

Tables (1)

Tables Icon

Table 1 Wavelength and Energy Assignment of D 0 5 F 7 j ( J = 0 2 ) Transitions for La 2 ( MoO 4 ) 3 : Eu 3 + Phosphors

Metrics