Abstract

Compact multiport circulators are important in eliminating the feedback of unwanted light in all-optical integrated circuits. A compact and highly symmetric three-port circulator with a magneto-optical cavity in a two-dimensional photonic crystal is designed and demonstrated by finite-element method first. Then, compact multiport circulators with port numbers greater than three built by cascading the three-port circulators are shown. Furthermore, an ultracompact six-port circulator is investigated in detail as an example. The results show that the cascaded system is beneficial to improving transmission to the output port and isolation among the other ports. This type of structure provides a guideline for designing high-efficiency and compact multiport magnetophotonic crystal circulators.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: the Road from Theory to Practice (Kluwer, 2002).
  2. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  3. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  4. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  5. A. E. Serebryannikov and A. Lakhtakia, “Transmission through a metallic photonic crystal immersed in a coherent atomic gas,” J. Opt. Soc. Am. B 27, 2151–2158 (2010).
    [CrossRef]
  6. E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Appl. Phys. Lett. 96, 163507(2010).
    [CrossRef]
  7. K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
    [CrossRef]
  8. Q. Liu, Z. B. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express 16, 18992–19000 (2008).
    [CrossRef]
  9. D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
    [CrossRef]
  10. K. Fasihi and S. Mohammadnejad, “Highly efficient channel-drop filter with a coupled cavity-based wavelength-selective reflection feedback,” Opt. Express 17, 8983–8997 (2009).
    [CrossRef] [PubMed]
  11. Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
    [CrossRef]
  12. J. H. Shahbazian and A. S. Karakashian, “Reflection of visible light on the anisotropic slab of DPS–DNG layers,” J. Opt. Soc. Am. B 26, B1–B6 (2009).
    [CrossRef]
  13. S. K. Mondal and B. J. H. Stadler, “Novel designs for integrating YIG/Air photonic crystal slab polarizers with waveguide Faraday rotators,” IEEE Photonics Technol. Lett. 17, 127–129 (2005).
    [CrossRef]
  14. N. Kono and M. Koshiba, “Magneto-photonic crystal slab waveguides with lower- refractive-index-silica claddings,” IEEE Photon. Technol. Lett. 19, 258–260 (2007).
    [CrossRef]
  15. M. Levy, H. C. Yang, M. J. Steel, and J. Fujita, “Flat-top response in one-dimensional magnetic photonic bandgap structures with Faraday rotation enhancement,” J. Lightwave Technol. 19, 1964–1969 (2001).
    [CrossRef]
  16. M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
    [CrossRef]
  17. N. Kono and Y. Tsuji, “A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides,” J. Lightwave Technol. 22, 1741–1747 (2004).
    [CrossRef]
  18. Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991(2005).
    [CrossRef] [PubMed]
  19. S. Fan, “Manipulating light with photonic crystals,” Physica B 394, 221–228 (2007).
    [CrossRef]
  20. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, and P. Hertel, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22, 240–253 (2005).
    [CrossRef]
  21. J. H. Chen, P. J. Hsieh, J. Y. Lin, and D. C. Su, “Improved N-port optical quasi-circulator by using a pair of orthogonal holographic spatial- and polarization-modules,” Opt. Express 12, 6553–6558 (2004).
    [CrossRef] [PubMed]
  22. Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
    [CrossRef]
  23. S. Fan and Z. Wang, “An ultra-compact circulator using two-dimensional magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 30, 641–645 (2006).
    [CrossRef]
  24. A. A. Jalali and A. T. Friberg, “Faraday rotation in a two-dimensional photonic crystal with a magneto-optic defect,” Opt. Lett. 30, 1213–1215 (2005).
    [CrossRef] [PubMed]

2010 (3)

E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Appl. Phys. Lett. 96, 163507(2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

A. E. Serebryannikov and A. Lakhtakia, “Transmission through a metallic photonic crystal immersed in a coherent atomic gas,” J. Opt. Soc. Am. B 27, 2151–2158 (2010).
[CrossRef]

2009 (2)

2008 (2)

Q. Liu, Z. B. Ouyang, C. J. Wu, C. P. Liu, and J. C. Wang, “All-optical half adder based on cross structures in two-dimensional photonic crystals,” Opt. Express 16, 18992–19000 (2008).
[CrossRef]

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

2007 (3)

S. Fan, “Manipulating light with photonic crystals,” Physica B 394, 221–228 (2007).
[CrossRef]

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

N. Kono and M. Koshiba, “Magneto-photonic crystal slab waveguides with lower- refractive-index-silica claddings,” IEEE Photon. Technol. Lett. 19, 258–260 (2007).
[CrossRef]

2006 (3)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

S. Fan and Z. Wang, “An ultra-compact circulator using two-dimensional magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 30, 641–645 (2006).
[CrossRef]

2005 (4)

2004 (2)

2001 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Asakawa, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Awazu, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Baets, R.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Bahlmann, N.

Baryshev, A. V.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Bhowmik, A. K.

E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Appl. Phys. Lett. 96, 163507(2010).
[CrossRef]

Borel, P. I.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Bos, P. J.

E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Appl. Phys. Lett. 96, 163507(2010).
[CrossRef]

Chen, C. H.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Chen, J. H.

Deotare, P. B.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Dokukin, M. E.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Dorjgotov, E.

E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Appl. Phys. Lett. 96, 163507(2010).
[CrossRef]

Dötsch, H.

Fan, S.

S. Fan, “Manipulating light with photonic crystals,” Physica B 394, 221–228 (2007).
[CrossRef]

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

S. Fan and Z. Wang, “An ultra-compact circulator using two-dimensional magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 30, 641–645 (2006).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991(2005).
[CrossRef] [PubMed]

Fasihi, K.

Friberg, A. T.

Fujita, J.

Gerhardt, R.

Hammer, M.

Heo, J.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Hertel, P.

Hsieh, P. J.

Ikeda, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Inoue, K.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Inoue, M.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Ishikawa, H.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Jalali, A. A.

Joannopoulos, J. D.

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: the Road from Theory to Practice (Kluwer, 2002).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, S. G.

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: the Road from Theory to Practice (Kluwer, 2002).

Jung, K. H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Karakashian, A. S.

Khanikaev, A. B.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Kim, J.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Kitagawa, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Kono, N.

N. Kono and M. Koshiba, “Magneto-photonic crystal slab waveguides with lower- refractive-index-silica claddings,” IEEE Photon. Technol. Lett. 19, 258–260 (2007).
[CrossRef]

N. Kono and Y. Tsuji, “A novel finite-element method for nonreciprocal magneto-photonic crystal waveguides,” J. Lightwave Technol. 22, 1741–1747 (2004).
[CrossRef]

Koshiba, M.

N. Kono and M. Koshiba, “Magneto-photonic crystal slab waveguides with lower- refractive-index-silica claddings,” IEEE Photon. Technol. Lett. 19, 258–260 (2007).
[CrossRef]

Kristensen, M.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Lakhtakia, A.

Levy, M.

Lim, P. B.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Lin, J. Y.

Liu, C. P.

Liu, Q.

Loncar, M.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Martin, R.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Miao, B. L.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Mizutani, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Mohammadnejad, S.

Mondal, S. K.

S. K. Mondal and B. J. H. Stadler, “Novel designs for integrating YIG/Air photonic crystal slab polarizers with waveguide Faraday rotators,” IEEE Photonics Technol. Lett. 17, 127–129 (2005).
[CrossRef]

Murakowski, J.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Nakamura, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ohkouchi, S.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Ouyang, Z. B.

Ozaki, N.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Prather, D. W.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Quan, Q.

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

Schneider, G. J.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Serebryannikov, A. E.

Shahbazian, J. H.

Sharkawy, A.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Shi, S. Y.

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

Sigmund, O.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Stadler, B. J. H.

S. K. Mondal and B. J. H. Stadler, “Novel designs for integrating YIG/Air photonic crystal slab polarizers with waveguide Faraday rotators,” IEEE Photonics Technol. Lett. 17, 127–129 (2005).
[CrossRef]

Steel, M. J.

Su, D. C.

Sugimoto, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Takagi, H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Takata, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Tsuji, Y.

Uchida, H.

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

Wang, J. C.

Wang, X.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Wang, Z.

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

S. Fan and Z. Wang, “An ultra-compact circulator using two-dimensional magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 30, 641–645 (2006).
[CrossRef]

Z. Wang and S. Fan, “Optical circulators in two-dimensional magneto-optical photonic crystals,” Opt. Lett. 30, 1989–1991(2005).
[CrossRef] [PubMed]

Watanabe, A.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Watanabe, Y.

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Wilkens, L.

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Wu, C. J.

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yang, H. C.

Zhuromskyy, O.

Appl. Phys. Lett. (2)

E. Dorjgotov, A. K. Bhowmik, and P. J. Bos, “High tunability mixed order photonic crystal,” Appl. Phys. Lett. 96, 163507(2010).
[CrossRef]

Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cavity strongly coupled to the feeding waveguide,” Appl. Phys. Lett. 96, 203102 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

N. Kono and M. Koshiba, “Magneto-photonic crystal slab waveguides with lower- refractive-index-silica claddings,” IEEE Photon. Technol. Lett. 19, 258–260 (2007).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

S. K. Mondal and B. J. H. Stadler, “Novel designs for integrating YIG/Air photonic crystal slab polarizers with waveguide Faraday rotators,” IEEE Photonics Technol. Lett. 17, 127–129 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

M. Inoue, A. V. Baryshev, A. B. Khanikaev, M. E. Dokukin, K. H. Jung, J. Heo, H. Takagi, H. Uchida, P. B. Lim, and J. Kim, “Magnetophotonic materials and their applications,” IEICE Trans. Electron. E91-C, 1630–1638 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Magn. Soc. Jpn. (1)

S. Fan and Z. Wang, “An ultra-compact circulator using two-dimensional magneto-optical photonic crystals,” J. Magn. Soc. Jpn. 30, 641–645 (2006).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. D: Appl. Phys. (1)

D. W. Prather, S. Y. Shi, J. Murakowski, G. J. Schneider, A. Sharkawy, C. H. Chen, B. L. Miao, and R. Martin, “Self-collimation in photonic crystal structures: a new paradigm for applications and device development,” J. Phys. D: Appl. Phys. 40, 2635–2651(2007).
[CrossRef]

New J. Phys. (1)

K. Asakawa, Y. Sugimoto, Y. Watanabe, N. Ozaki, A. Mizutani, Y. Takata, Y. Kitagawa, H. Ishikawa, N. Ikeda, K. Awazu, X. Wang, A. Watanabe, S. Nakamura, S. Ohkouchi, K. Inoue, M. Kristensen, O. Sigmund, P. I. Borel, and R. Baets, “Photonic crystal and quantum dot technologies for all-optical switch and logic device,” New J. Phys. 8, 208 (2006).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Photon. Nanostr. Fundam. Appl. (1)

Z. Wang and S. Fan, “Suppressing the effect of disorders using time-reversal symmetry breaking in magneto-optical photonic crystals: an illustration with a four-port circulator,” Photon. Nanostr. Fundam. Appl. 4, 132–140 (2006).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Physica B (1)

S. Fan, “Manipulating light with photonic crystals,” Physica B 394, 221–228 (2007).
[CrossRef]

Other (2)

S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: the Road from Theory to Practice (Kluwer, 2002).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Model of a three-port MPC circulator in [18]; (b) model of the designed three-port MPC circulator.

Fig. 2
Fig. 2

(a) Detailed structure of the compact and highly symmetric three-port MPC circulator designed; (b) Hz-field distribution of the even mode for the point-defect cavity with nonmagnetic materials or without any dc magnetic field; and (c) Hz-field distribution of the odd mode for the point-defect cavity with nonmagnetic materials or without any dc magnetic field.

Fig. 3
Fig. 3

Light transmissions to the output and isolated ports and light reflection at the input port for the three-port MPC circulator designed. The two insets show the calculated insertion loss and isolation of the circulator, respectively.

Fig. 4
Fig. 4

Hz-field distributions in the three-port MPC circulator designed excited at the normalized frequency of a / λ = 0.3508 : (a) excited at Port A for the case without magneto-optical effect; (b) excited at Port A for the case with magneto-optical effect; (c) excited at Port B for the case with magneto-optical effect; and (d) excited at Port C for the case with magneto-optical effect.

Fig. 5
Fig. 5

The contrast ratio versus Δ r at frequencies of a / λ = 0.3506 , 0.35065, 0.3508, 0.35085, and 0.3509 for the three-port MPC circulator designed.

Fig. 6
Fig. 6

Typical models of compact multiport MPC circulators: (a) four ports, (b) six ports, and (c) eight ports.

Fig. 7
Fig. 7

Detailed structure of an ultracompact six- port MPC circulator created through cascading six three-port MPC circulators.

Fig. 8
Fig. 8

Hz-field distributions in the designed six-port MPC circulator excited at the a / λ = 0.3508 frequency. The light is launched at (a) Port A, (b) Port B, (c) Port C, (d) Port D, (e) Port E, and (f) Port F.

Fig. 9
Fig. 9

Light transmission for the case of launching light from Port A in the six-port MPC circulator designed. The two insets show the calculated insertion loss and isolation of the circulator, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε = [ ε 0 i ε a 0 i ε a ε 0 0 0 0 ε 0 ] ,

Metrics