Abstract

The resonance properties in a guided mode resonance (GMR) structure having a cladding layer inserted between the subwavelength grating and the high-index film are studied. The presence of the layer results in a significant reduction of the resonance linewidth where multiple-coupling approximations are implemented to describe this behavior. The sensitivity of the resonance wavelength to the change of the layer’s refractive index demonstrates the feasibility of using this configuration as a high resolution GMR-based sensor (up to 1×105 refractive index unit). The improvement is achieved through the waveguide properties with no perturbation of the grating param eters. In this scheme, coupling to a cladding mode increases the sensitivity 32 times that of coupling to a guided mode when using high-index substances. For low-index substances, exciting super mode resonances enhances the sensitivity by a factor of 6 compared to the guided-mode resonance.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
    [CrossRef]
  2. D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
    [CrossRef]
  3. K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
    [CrossRef]
  4. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
    [CrossRef]
  5. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonics crystal surface,” Appl. Opt. 46, 2351–2360 (2007).
    [CrossRef] [PubMed]
  6. I. Avrutsky and R. Rabady, “Waveguide grating mirror for large-area semiconductor lasers,” Opt. Lett. 26, 989–991 (2001).
    [CrossRef]
  7. R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.
  8. G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filter with multilayer grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
    [CrossRef]
  9. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. 41, 1241–1245 (2002).
    [CrossRef] [PubMed]
  10. S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46, 7982–7992(2007).
    [CrossRef] [PubMed]
  11. A. Greenwell, S. Boonruang, and M. G. Moharam, “Control of resonance separation over a wide spectral range in multiwavelength resonant grating filters,” Appl. Opt. 46, 6355–6361(2007).
    [CrossRef] [PubMed]
  12. D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
    [CrossRef]
  13. C. Wei, S. Liu, D. Deng, J. Shen, J. Shao, and Z. Fan, “Electric field enhancement in guided-mode resonance filters,” Opt. Lett. 31, 1223–1225 (2006).
    [CrossRef] [PubMed]
  14. S. Boonruang and M. Wu, “Enhancement of surface near-field using 2-D guided mode resonance structure,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FThS6.
  15. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary grating,” J. Opt. Soc. Am. A 12, 1068–1076 (1995).
    [CrossRef]
  16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995).
    [CrossRef]
  17. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17, 1241–1249(2000).
    [CrossRef]

2007 (6)

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonics crystal surface,” Appl. Opt. 46, 2351–2360 (2007).
[CrossRef] [PubMed]

S. Boonruang, A. Greenwell, and M. G. Moharam, “Broadening the angular tolerance in two-dimensional grating resonance structures at oblique incidence,” Appl. Opt. 46, 7982–7992(2007).
[CrossRef] [PubMed]

A. Greenwell, S. Boonruang, and M. G. Moharam, “Control of resonance separation over a wide spectral range in multiwavelength resonant grating filters,” Appl. Opt. 46, 6355–6361(2007).
[CrossRef] [PubMed]

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

2006 (1)

2002 (1)

2001 (1)

2000 (3)

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filter with multilayer grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Design considerations for narrow-band dielectric resonant grating reflection filters of finite length,” J. Opt. Soc. Am. A 17, 1241–1249(2000).
[CrossRef]

D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

1995 (2)

1992 (1)

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Avrutsky, I.

Beausoleil, R. G.

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Boonruang, S.

Chan, L. L.

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Cunningham, B. T.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonics crystal surface,” Appl. Opt. 46, 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Deng, D.

Dunn, S. C.

Fan, Z.

Fattal, D.

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Friesem, A. A.

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filter with multilayer grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[CrossRef]

Ganesh, N.

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonics crystal surface,” Appl. Opt. 46, 2351–2360 (2007).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Greenwell, A.

Jacob, D. K.

Johnson, E.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Lee, K. J.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Levy-Yurista, G.

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filter with multilayer grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[CrossRef]

Li, Z.

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Liu, S.

Lui, H.

D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

Magnusson, R.

D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Mathias, P. C.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, “Combined enhanced fluorescence and label-free biomolecular detection with a photonics crystal surface,” Appl. Opt. 46, 2351–2360 (2007).
[CrossRef] [PubMed]

McComb, T.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Menelaos, P.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Moharam, M. G.

Mugnusson, R.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Pommet, D. A.

Priambodo, P. S.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

Pyayt, A.

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Rabady, R.

Richardson, M. C.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Roth, Z.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Shah, L.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Shao, J.

Shen, J.

Sigalas, M.

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Sims, R. A.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Sudesh, V.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Tibuleac, S.

D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

Wang, S. S.

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

Wawro, D.

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

Wei, C.

Wu, M.

S. Boonruang and M. Wu, “Enhancement of surface near-field using 2-D guided mode resonance structure,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FThS6.

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (2)

G. Levy-Yurista and A. A. Friesem, “Very narrow spectral filter with multilayer grating-waveguide structures,” Appl. Phys. Lett. 77, 1596–1598 (2000).
[CrossRef]

R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992).
[CrossRef]

IEEE Sens. J. (1)

K. J. Lee, D. Wawro, P. S. Priambodo, and R. Mugnusson, “Agarose-gel guided-mode resonance humidity sensor,” IEEE Sens. J. 7, 409–414 (2007).
[CrossRef]

J. Opt. Soc. Am. A (3)

Nature Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nature Nanotechnol. 2, 515–520 (2007).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (2)

D. Wawro, S. Tibuleac, R. Magnusson, and H. Lui, “Optical fiber endface biosensor based on resonances in dielectric waveguide grating,” Proc. SPIE 3911, 86–94 (2000).
[CrossRef]

D. Fattal, M. Sigalas, A. Pyayt, Z. Li, and R. G. Beausoleil, “Guided-mode resonance sensor with extended spatial sensitivity,” Proc. SPIE 6766, 67660J (2007).
[CrossRef]

Other (2)

S. Boonruang and M. Wu, “Enhancement of surface near-field using 2-D guided mode resonance structure,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2008), paper FThS6.

R. A. Sims, Z. Roth, T. McComb, L. Shah, V. Sudesh, P. Menelaos, E. Johnson, and M. C. Richardson, “Guided mode resonance filters as stable line-narrowing feedback elements for Tm fiber lasers,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper CThN2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Guided mode resonance with cladding layer between the grating and the high-index film.

Fig. 2
Fig. 2

Multiple-coupling mechanisms in the cladding/film regions.

Fig. 3
Fig. 3

(a) Comparison of the normalized coupling efficiencies calculated by multiple-coupling approximations and RCWA, (b) RCWA calculations of the spectral linewidth normalized to the linewidth at t c / t f = 0 , (c) RCWA calculations of the difference between forward and backward first-order diffraction in the high-index film versus the grating depth ratio when t c / t f = 0 .

Fig. 4
Fig. 4

(a) Power ratio and (b) resonance sensitivity for different excited modes versus the cladding index ratio.

Fig. 5
Fig. 5

Field distribution of the TE3 mode for different values of the cladding index ratio.

Fig. 6
Fig. 6

Effect of the cladding thickness on (a) the power ratio and (b) the resonance sensitivity of TE3 mode.

Fig. 7
Fig. 7

Rigorous coupled waveguide analysis calculations of (a) the spectral linewidth ( Δ λ FWHM / λ 0 ) versus the cladding thickness ratio ( t c / t f ) for four different modes when δ n clad = 0 , and (b)  Δ λ FWHM / λ 0 of TE3 resonance versus δ n clad for five different t c / t f .

Fig. 8
Fig. 8

(a) Field distribution ( | E y | , contour plot) of the super mode along the x y plane and the structure refractive index, (b) plot of the field distribution (solid curve) and the normalized structure refractive index (dashed curve) in Fig. 8a at x = 0 , (c) the resonance response when Δ n = 0 and 10 3 RIU.

Fig. 9
Fig. 9

(a) Field distribution ( | E y | , contour plot) of the cladding mode along the x y plane and the structure refractive index, (b) plot of the field distribution (solid curve) and the normalized structure refractive index (dashed curve) in Fig. 9a at x = 0 , (c) the resonance response when Δ n = 0 , 10 5 and 10 4 RIU.

Fig. 10
Fig. 10

(a) Comparison of the device sensitivity for several schemes. Low cladding index: guided mode ( λ 1 ), super mode ( λ 2 ), grating mode ( λ 3 ). High cladding index: cladding mode ( λ 4 ). (b) Field distributions of the different excited modes.

Tables (1)

Tables Icon

Table 1 Definitions of the Constants Used in the Derivation

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

λ 0 n eff Λ ,
γ 1 = 2 π λ 0 ( λ 0 Λ ) 2 n clad 2 .
E total = E 0 · [ c 01 · exp ( γ 1 · t c ) + c 00 · r 21 · exp ( i ϕ ) · c 01 ( 1 ) · exp ( γ 1 · t c ) + c 00 · c 00 ( 1 ) · ( r 21 · exp ( i ϕ ) ) 2 · c 01 ( 1 ) · exp ( γ 1 · t c ) + c 00 · ( c 00 ( 1 ) ) 2 · ( r 21 · exp ( i ϕ ) ) 3 · c 01 ( 1 ) · exp ( γ 1 · t c ) + ] .
E total = E 0 · c 01 · exp ( γ 1 · t c ) · ( 1 + c 00 · r 21 · exp ( i ϕ ) 1 c 00 ( 1 ) · r 21 · exp ( i ϕ ) ) .
η guided = | E total E 0 | 2 = η 01 · exp ( 2 γ 1 · t c ) · | 1 + η 00 · r 21 · exp ( i ϕ ) 1 η 00 ( 1 ) · r 21 · exp ( i ϕ ) | 2 .
Δ ϕ FWHM = η guided 1 η guided .
λ 0 + Δ λ 0 = Λ ( n eff , 0 + n eff λ | λ 0 Δ λ 0 + n eff n clad | λ 0 Δ n clad + n eff t c | λ 0 Δ t c ) .
Δ λ 0 Δ n clad = Λ ( 1 Λ n eff λ | λ 0 ) ( n eff n clad | λ 0 ) .
S = Δ λ / λ 0 Δ n / n 0 ,

Metrics