Abstract

Based on the real sense of the time-of-flight , we demonstrate an alternative method of measuring the temperature of cold atoms in magneto-optical traps (MOTs) using a high-finesse optical microcavity, which acts as a pointlike single-atom counter. A cloud of atoms trapped in magneto-optical traps is positioned about 5mm above the cavity, and the atoms fall freely down through the cavity. The temperature of the cold atoms in the MOT is determined by counting the exact arrival times of the single atoms. A theoretical model based on a ballistic expansion of a cloud of trapped atoms falling in the earth’s gravitational field is used to fit the probability distribution of atom arrivals, and the fittings agree very well with the experimental results. This method could be used for systems with little room, where an extra probe beam is hard to involve, or with fewer atoms initially.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
    [CrossRef]
  2. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
    [CrossRef] [PubMed]
  3. P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
    [CrossRef] [PubMed]
  4. D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
    [CrossRef]
  5. T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
    [CrossRef]
  6. I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
    [CrossRef]
  7. P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
    [CrossRef]
  8. C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
    [CrossRef] [PubMed]
  9. J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
    [CrossRef] [PubMed]
  10. M. Mitsunaga, M. Yamashita, M. Koashi, and N. Imoto, “Temperature diagnostics for cold sodium atoms by transient four-wave mixing,” Opt. Lett. 23, 840–842 (1998).
    [CrossRef]
  11. A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
    [CrossRef]
  12. P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).
  13. A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
    [CrossRef] [PubMed]
  14. R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008).
    [CrossRef]
  15. A. Haase, B. Hessmo, and J. Schmiedmayer, “Detecting magnetically guided atoms with an optical cavity,” Opt. Lett. 31, 268–270 (2006).
    [CrossRef] [PubMed]
  16. I. Teper, Y. Lin, and V. Vuletic, “Resonator-Aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
    [CrossRef] [PubMed]
  17. G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt. 45, 7628–7631 (2006).
    [CrossRef] [PubMed]
  18. P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
    [CrossRef]
  19. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21, 1393–1395 (1996).
    [CrossRef] [PubMed]
  20. H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993).

2010 (1)

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

2009 (1)

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

2008 (1)

R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008).
[CrossRef]

2006 (3)

2005 (1)

A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
[CrossRef] [PubMed]

2002 (2)

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
[CrossRef]

1998 (1)

1996 (1)

1994 (1)

J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
[CrossRef] [PubMed]

1993 (1)

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

1990 (1)

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

1987 (1)

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Andreyuk, A.

I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
[CrossRef]

Berman, P.

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

Browaeys, A.

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Brzozowski, T. M.

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

Buch, P.

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

Buchler, B. C.

R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008).
[CrossRef]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Carmichael, H. J.

H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993).

Chapman, M. S.

Chu, S.

D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, “Optical molasses and multilevel atoms: experiment,” J. Opt. Soc. Am. B 6, 2072–2083 (1989).
[CrossRef]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Close, J. D.

R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008).
[CrossRef]

Courtois, J. Y.

J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
[CrossRef] [PubMed]

Csambal, C.

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

Ertmer, W.

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

Esslinger, T.

A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
[CrossRef] [PubMed]

Fuhrmanek, A.

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Gawlik, W.

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

Gould, P. L.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

Grangier, P.

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Grynberg, G.

J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
[CrossRef] [PubMed]

Guo, Y.

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

Haase, A.

Hessmo, B.

Imoto, N.

Kimble, H. J.

Koashi, M.

Kohl, M.

A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
[CrossRef] [PubMed]

Kohns, P.

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

Kumarakrishnan, A.

I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
[CrossRef]

Lance, A. M.

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Lett, P. D.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

Li, G.

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt. 45, 7628–7631 (2006).
[CrossRef] [PubMed]

Li, Y.

Lin, Y.

I. Teper, Y. Lin, and V. Vuletic, “Resonator-Aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef] [PubMed]

Lounis, B.

J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
[CrossRef] [PubMed]

Mabuchi, H.

Maczynska, M.

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

Metcalf, H. J.

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Mitsunaga, M.

Ottl, A.

A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
[CrossRef] [PubMed]

Phillips, W. D.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

Poldy, R.

R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008).
[CrossRef]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

Riis, E.

Ritter, S.

A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
[CrossRef] [PubMed]

Rolston, S. L.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

Schmiedmayer, J.

Shevy, Y.

Sortais, Y. R. P.

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Suptitz, W.

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

Tanner, C. E.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

Teper, I.

I. Teper, Y. Lin, and V. Vuletic, “Resonator-Aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef] [PubMed]

Tuchendler, C.

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Turchette, Q. A.

Ungar, P. J.

van der Straten, P.

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Verkerk, P.

J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
[CrossRef] [PubMed]

Vuletic, V.

I. Teper, Y. Lin, and V. Vuletic, “Resonator-Aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef] [PubMed]

Wang, J.

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt. 45, 7628–7631 (2006).
[CrossRef] [PubMed]

Wang, X.

Watts, R. N.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

Weel, M.

I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
[CrossRef]

Weiss, D. S.

Westbrook, C. I.

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

Yamashita, M.

Yavin, I.

I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
[CrossRef]

Zachorowski, J.

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

Zawada, M.

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

Zhang, J.

Zhang, P.

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

Zhang, T.

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt. 45, 7628–7631 (2006).
[CrossRef] [PubMed]

Zhang, Y.

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

G. Li, Y. Zhang, Y. Li, X. Wang, J. Zhang, J. Wang, and T. Zhang, “Precision measurement of ultralow losses of an asymmetric optical microcavity,” Appl. Opt. 45, 7628–7631 (2006).
[CrossRef] [PubMed]

Am. J. Phys. (1)

I. Yavin, M. Weel, A. Andreyuk, and A. Kumarakrishnan, “A calculation of the time-of-flight distribution of trapped atoms,” Am. J. Phys. 70, 149–152 (2002).
[CrossRef]

Appl. Opt. (1)

Europhys. Lett. (1)

P. Kohns, P. Buch, W. Suptitz, C. Csambal, and W. Ertmer, “Online measurement of sub-Doppler temperatures in a Rb magneto-optical trap-by-trap centre oscillations,” Europhys. Lett. 22, 517–522 (1993).
[CrossRef]

J. Opt. B (1)

T. M. Brzozowski, M. Maczynska, M. Zawada, J. Zachorowski, and W. Gawlik, “Time-of-flight measurement of the temperature of cold atoms for short trap-probe beam distances,” J. Opt. B 4, 62–66 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

New J. Phys. (1)

A. Fuhrmanek, A. M. Lance, C. Tuchendler, P. Grangier, Y. R. P. Sortais, and A. Browaeys, “Imaging a single atom in a time-of-flight experiment,” New J. Phys. 12, 053028 (2010).
[CrossRef]

Opt. Lett. (3)

Phys. Rev. A (2)

R. Poldy, B. C. Buchler, and J. D. Close, “Single-atom detection with optical cavities,” Phys. Rev. A 78, 013640 (2008).
[CrossRef]

P. Zhang, G. Li, Y. Zhang, Y. Guo, J. Wang, and T. Zhang, “Light-induced atom desorption for cesium loading of a magneto-optical trap: Analysis and experimental investigations,” Phys. Rev. A 80, 053420 (2009).
[CrossRef]

Phys. Rev. Lett. (6)

A. Ottl, S. Ritter, M. Kohl, and T. Esslinger, “Correlations and counting statistics of an atom laser,” Phys. Rev. Lett. 95, 090404 (2005).
[CrossRef] [PubMed]

I. Teper, Y. Lin, and V. Vuletic, “Resonator-Aided single-atom detection on a microfabricated chip,” Phys. Rev. Lett. 97, 023002 (2006).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, “Trapping of neutral sodium atoms with radiation pressure,” Phys. Rev. Lett. 59, 2631–2634 (1987).
[CrossRef] [PubMed]

P. D. Lett, R. N. Watts, C. I. Westbrook, W. D. Phillips, P. L. Gould, and H. J. Metcalf, “Observation of atoms laser cooled below the Doppler limit,” Phys. Rev. Lett. 61, 169–172 (1988).
[CrossRef] [PubMed]

C. I. Westbrook, R. N. Watts, C. E. Tanner, S. L. Rolston, W. D. Phillips, and P. D. Lett, “Localization of atoms in a three-dimensional standing wave,” Phys. Rev. Lett. 65, 33–36 (1990).
[CrossRef] [PubMed]

J. Y. Courtois, G. Grynberg, B. Lounis, and P. Verkerk, “Recoil-induced resonances in cesium: an atomic analog to the free-electron laser,” Phys. Rev. Lett. 72, 3017–3020 (1994).
[CrossRef] [PubMed]

Other (3)

H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

P. Berman, Cavity Quantum Electrodynamics (Academic, 1994).

H. J. Carmichael, An Open Systems Approach to Quantum Optics (Springer, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Diagram of experimental setup. Optical cavity is formed by two spherical mirrors with ultrahigh reflectivity. MOT is positioned 5 mm right above the cavity. The system is in a strong coupling regime with the parameters ( g 0 , k , γ ) / 2 π = ( 23.9 , 2.6 , 2.6 ) MHz . SPCMs are used to detect the cavity transmission. Atoms fall down freely from the MOT and pass through the cavity.

Fig. 2
Fig. 2

Probability distribution of atom arrivals at different time with different temperatures ( T = 200 μK , 120 μK , 60 μK , 20 μK ) according to Eq. (4). Parameters: M = 2.21 × 10 25 kg , h = 5 mm , k B = 1.38 × 10 23 J / K , g = 9.8 m / s 2 .

Fig. 3
Fig. 3

Typical atom transit signal when atoms fall down freely one by one. Eight atoms are observed in this drop and five atoms in average. Inset shows enlarged view of one of the transits in a time scale that shows the details of the transit. The solid blue curve is the fitting according to the cavity transmission in weak-field approximation.

Fig. 4
Fig. 4

Probability distribution of atom arrivals based on total of 664 times of transits (red solid bars) fitted by the theoretical model according to Eq. (4) (dashed blue line) in two different experimental situations. The corresponding temperatures of atoms in the MOT are (a)  T = 256 ± 3 μK and (b)  T = 117 ± 8 μK , according to the fittings. Experimental parameters for (a) detuning of cooling beam, Δ = 12 MHz ; optical intensity of cooling and repumping beams, 12.5 mW / cm 2 and 9.4 mW / cm 2 , respectively; and gradient of quadrupole magnetic field, 9.2 G / cm . Corresponding param eters for (b)  Δ = 10 MHz , 8.8 mW / cm 2 , 8.2 mW / cm 2 , and 9.2 G / cm , respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

N ( υ ) d 3 υ = ( M 2 π k B T ) 3 / 2 exp [ M ( υ x 2 + υ y 2 + υ z 2 ) 2 k B T ] d 3 υ ,
υ z = ( 1 2 g t 2 h ) / t , υ x = x / t , υ y = y / t ,
J = | υ x x υ x y υ x z υ y x υ y y υ y z υ z x υ z y υ z z | = | 1 t 0 x 2 t 2 0 1 t y 2 t 2 0 0 1 2 g + h t 2 | = 1 2 g t 2 + h t 4
P ( t ) ( M 2 π k B T ) 3 / 2 e m 2 k B T t 2 ( 1 2 g t 2 h ) 2 × h + 1 2 g t 2 t 4 .

Metrics