Abstract

For photopolymers, knowing the rate of diffusion of the active monomer is important when modeling the material evolution during recording in order to understand and optimize their performance. Unfortunately, a confusingly wide range of values have been reported in the literature. Re-examining these results, experiments are carried out for both coverplated (sealed) and uncoverplated material layers and the measurements are analyzed using appropriate models. In this way, a more detailed analysis of the diffraction processes taking place for large-period gratings is provided. These results, combined with those in Part II, provide unambiguous evidence that the monomer diffusion rate in a commonly used acrylamide polyvinyl alcohol-based material is of the order of 1010cm2/s. This value closely agrees with the predictions of the nonlocal polymerization-driven diffusion model.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
    [CrossRef]
  2. F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
    [CrossRef]
  3. G. P. Nordinand and A. R. Tanguay, Jr., “Photopolymer-based stratified volume holographic optical elements,” Opt. Lett. 17, 1709–1711 (1992).
    [CrossRef] [PubMed]
  4. R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.
  5. J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
    [CrossRef] [PubMed]
  6. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295–301 (2007).
    [CrossRef] [PubMed]
  7. M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
    [CrossRef]
  8. M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
    [CrossRef]
  9. M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
    [CrossRef]
  10. S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
    [CrossRef]
  11. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994).
    [CrossRef]
  12. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
    [CrossRef]
  13. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001).
    [CrossRef]
  14. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
    [CrossRef]
  15. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845–852 (2002).
    [CrossRef] [PubMed]
  16. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
    [CrossRef] [PubMed]
  17. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
    [CrossRef]
  18. J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
    [CrossRef]
  19. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
    [CrossRef] [PubMed]
  20. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008).
    [CrossRef] [PubMed]
  21. S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
    [CrossRef]
  22. S. Gallego, A. Marquez, S. Marini, E. Fernandez, M. Ortuno, and I. Parcual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279–19291 (2009).
    [CrossRef] [PubMed]
  23. S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
    [CrossRef]
  24. M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
    [CrossRef]
  25. J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986).
    [CrossRef]
  26. C. H. Wang and J. L. Xia, “Holographic grating studies of the diffusion process of camphorquinone in polycarbonate above and below tg,” Macromolecules 21, 3519–3523(1988).
    [CrossRef]
  27. D. Ehlich and H. Sillescu, “Tracer diffusion at the glass transition,” Macromolecules 23, 1600–1610 (1990).
    [CrossRef]
  28. J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32, 5655–5659 (1999).
    [CrossRef]
  29. A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999).
    [CrossRef]
  30. T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
    [CrossRef]
  31. C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).
  32. S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitisers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536(2009).
    [CrossRef]
  33. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).
  34. J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001).
    [CrossRef]
  35. P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem. 88, 2297–2302 (1984).
    [CrossRef]
  36. L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Phys. At. Nucl. 246, 591–608 (1997).
    [CrossRef]
  37. S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253, 317–321 (1999).
    [CrossRef]
  38. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
    [CrossRef] [PubMed]
  39. G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957).
    [CrossRef]
  40. S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
    [CrossRef]
  41. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
    [CrossRef]
  42. J. T. Sheridan, “Stacked volume holographic gratings. Part I. Transmission gratings in series,” Optik (Jena) 95, 73–80 (1993).
  43. M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005).
    [CrossRef] [PubMed]
  44. R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).
  45. N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 1. Thickness-changed holograms and some characteristics of diffraction efficiency,” Appl. Opt. 37, 5843–5853 (1998).
    [CrossRef]
  46. N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 2. Diffraction by a surface-eroded hologram layer,” Appl. Opt. 37, 5854–5863 (1998).
    [CrossRef]
  47. N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 3. Increase of higher-order lights owing to degenerated complex diffraction,” Appl. Opt. 37, 5864–5878(1998).
    [CrossRef]
  48. R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
    [CrossRef]
  49. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).
  50. H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).
  51. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University, 1975).
  52. J. Crank and G. S. Park, Diffusion in Polymers, 1st ed.(Academic, 1968).
  53. M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
    [CrossRef]
  54. S. Wolfram, “Mathematica,” www.wolfram.com/mathematica.
  55. T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
    [CrossRef]

2010

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
[CrossRef]

2009

2008

T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16, 8487–8497 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

2007

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
[CrossRef]

A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295–301 (2007).
[CrossRef] [PubMed]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

2006

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
[CrossRef] [PubMed]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

2005

2004

2002

2001

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001).
[CrossRef]

2000

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

1999

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32, 5655–5659 (1999).
[CrossRef]

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999).
[CrossRef]

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253, 317–321 (1999).
[CrossRef]

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).

1998

1997

L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Phys. At. Nucl. 246, 591–608 (1997).
[CrossRef]

1994

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

1993

J. T. Sheridan, “Stacked volume holographic gratings. Part I. Transmission gratings in series,” Optik (Jena) 95, 73–80 (1993).

1992

1990

D. Ehlich and H. Sillescu, “Tracer diffusion at the glass transition,” Macromolecules 23, 1600–1610 (1990).
[CrossRef]

1988

C. H. Wang and J. L. Xia, “Holographic grating studies of the diffusion process of camphorquinone in polycarbonate above and below tg,” Macromolecules 21, 3519–3523(1988).
[CrossRef]

1986

J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986).
[CrossRef]

1984

M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
[CrossRef]

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem. 88, 2297–2302 (1984).
[CrossRef]

1971

1957

G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957).
[CrossRef]

Abe, S.

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253, 317–321 (1999).
[CrossRef]

Acebal, P.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Antonietti, M.

M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
[CrossRef]

Ashley, J.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Babeva, T.

Bajpai, A. K.

S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
[CrossRef]

Bajpai, R.

S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
[CrossRef]

Belendez, A.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

Bernal, M. P.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Blaya, S.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Burr, G. W.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Carr, A. J.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

Carretero, L.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Castro, J.

R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

Close, C. E.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).

Colburn, W. S.

Coufal, H.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Coutandin, J.

M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
[CrossRef]

Crank, J.

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University, 1975).

J. Crank and G. S. Park, Diffusion in Polymers, 1st ed.(Academic, 1968).

Daniels, S. M.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

Ehlich, D.

D. Ehlich and H. Sillescu, “Tracer diffusion at the glass transition,” Macromolecules 23, 1600–1610 (1990).
[CrossRef]

J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986).
[CrossRef]

Fernandez, E.

S. Gallego, A. Marquez, S. Marini, E. Fernandez, M. Ortuno, and I. Parcual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279–19291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

Fimia, A.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Fox, M. A.

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem. 88, 2297–2302 (1984).
[CrossRef]

Gallego, S.

Gleeson, M. R.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitisers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536(2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005).
[CrossRef] [PubMed]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

Grabowski, M. W.

Grtutter, R.

M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
[CrossRef]

Guenther, H.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Guo, J.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

Haines, K. A.

Hoffnagle, J. A.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Howard, R.

Jallapuram, R.

Jefferson, C. M.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Kamat, P. V.

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem. 88, 2297–2302 (1984).
[CrossRef]

Kamiya, N.

Karpov, H. M.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).

Kasala, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
[CrossRef] [PubMed]

Katare, R.

S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
[CrossRef]

Kelly, J. V.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[CrossRef]

Kostuk, R. K.

R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

Lawrence, J. R.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845–852 (2002).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

Liu, S.

Lui, S.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

MacFarlane, R. M.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Mackey, D.

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
[CrossRef]

Madrigal, R. F.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Marcus, B.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Marini, S.

Marquez, A.

S. Gallego, A. Marquez, S. Marini, E. Fernandez, M. Ortuno, and I. Parcual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279–19291 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

Martin, S.

McLeod, R. R.

Mendez, D.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

Mishra, S.

S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
[CrossRef]

Mooney, D. A.

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

Murciano, A.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Naydenova, I.

Neipp, C.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[CrossRef]

Niepp, C.

Nordinand, G. P.

O’Neill, F. T.

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845–852 (2002).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).

Obukhovsky, V. V.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).

Ortuno, M.

Oster, G.

G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957).
[CrossRef]

Oster, G. K.

G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957).
[CrossRef]

Parcual, I.

Park, G. S.

J. Crank and G. S. Park, Diffusion in Polymers, 1st ed.(Academic, 1968).

Pascual, I.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

Petit, R.

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
[CrossRef]

Prati, G.

G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957).
[CrossRef]

Rewari, A.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
[CrossRef] [PubMed]

Sabol, D.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

Sagis, L. M. C.

L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Phys. At. Nucl. 246, 591–608 (1997).
[CrossRef]

Saravanamuttu, K.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
[CrossRef] [PubMed]

Shelby, R. M.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Sheridan, J. T.

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitisers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536(2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005).
[CrossRef] [PubMed]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, J. T. Sheridan, S. Gallego, and C. Niepp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerisation-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845–852 (2002).
[CrossRef] [PubMed]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001).
[CrossRef]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).

J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108–1114 (2000).
[CrossRef]

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253, 317–321 (1999).
[CrossRef]

J. T. Sheridan, “Stacked volume holographic gratings. Part I. Transmission gratings in series,” Optik (Jena) 95, 73–80 (1993).

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).

Sillescu, H.

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999).
[CrossRef]

D. Ehlich and H. Sillescu, “Tracer diffusion at the glass transition,” Macromolecules 23, 1600–1610 (1990).
[CrossRef]

M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
[CrossRef]

Sincerbox, G. T.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

Smirnova, T. N.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).

Sullivan, A. C.

Syms, R. R. A.

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

Tanguay, A. R.

Toal, V.

Ulibarrena, M.

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Veniaminov, A. V.

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999).
[CrossRef]

Wang, C. H.

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32, 5655–5659 (1999).
[CrossRef]

C. H. Wang and J. L. Xia, “Holographic grating studies of the diffusion process of camphorquinone in polycarbonate above and below tg,” Macromolecules 21, 3519–3523(1988).
[CrossRef]

J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986).
[CrossRef]

Wolfram, S.

S. Wolfram, “Mathematica,” www.wolfram.com/mathematica.

Xia, J.

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32, 5655–5659 (1999).
[CrossRef]

Xia, J. L.

C. H. Wang and J. L. Xia, “Holographic grating studies of the diffusion process of camphorquinone in polycarbonate above and below tg,” Macromolecules 21, 3519–3523(1988).
[CrossRef]

Zhang, D.

R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

Zhang, J.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
[CrossRef] [PubMed]

J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

Appl. Opt.

A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295–301 (2007).
[CrossRef] [PubMed]

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Comparison of holographic photopolymer materials by use of analytic non-local diffusion models,” Appl. Opt. 41, 845–852 (2002).
[CrossRef] [PubMed]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900–2905 (2004).
[CrossRef] [PubMed]

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636–1641 (1971).
[CrossRef] [PubMed]

M. R. Gleeson, J. V. Kelly, F. T. O’Neill, and J. T. Sheridan, “Recording beam modulation during grating formation,” Appl. Opt. 44, 5475–5482 (2005).
[CrossRef] [PubMed]

N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 1. Thickness-changed holograms and some characteristics of diffraction efficiency,” Appl. Opt. 37, 5843–5853 (1998).
[CrossRef]

N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 2. Diffraction by a surface-eroded hologram layer,” Appl. Opt. 37, 5854–5863 (1998).
[CrossRef]

N. Kamiya, “Rigorous coupled wave analysis for practical planar dielectric gratings: 3. Increase of higher-order lights owing to degenerated complex diffraction,” Appl. Opt. 37, 5864–5878(1998).
[CrossRef]

Appl. Phys. Lett.

S. Gallego, A. Marquez, D. Mendez, C. Neipp, M. Ortuno, A. Belendez, E. Fernandez, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92, 073306 (2008).
[CrossRef]

IBM J. Res. Dev.

J. Ashley, M. P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. MacFarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44, 341–368 (2000).
[CrossRef]

J. Am. Chem. Soc.

J. Zhang, K. Kasala, A. Rewari, and K. Saravanamuttu, “Self-trapping of spatially and temporally incoherent white light in a photochemical medium,” J. Am. Chem. Soc. 128, 406–407(2006).
[CrossRef] [PubMed]

G. K. Oster, G. Oster, and G. Prati, “Dye-sensitized photopolymerisation of acrylamide,” J. Am. Chem. Soc. 79, 595–598(1957).
[CrossRef]

J. Appl. Phys.

M. R. Gleeson, J. V. Kelly, D. Sabol, C. E. Close, S. Lui, and J. T. Sheridan, “Modelling the photochemical effects present during holographic grating formation in photopolymer materials,” J. Appl. Phys. 102, 023108 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “Temporal response and first order volume changes during grating formation in photopolymers,” J. Appl. Phys. 99, 113105 (2006).
[CrossRef]

J. Appl. Polym. Sci.

S. Mishra, R. Bajpai, R. Katare, and A. K. Bajpai, “Preparation and characterization of polyvinyl alcohol based biomaterials: water sorption and in vitro blood compatibility study,” J. Appl. Polym. Sci. 100, 2402–2408 (2006).
[CrossRef]

J. Mater. Sci.

F. T. O’Neill, A. J. Carr, S. M. Daniels, M. R. Gleeson, J. V. Kelly, J. R. Lawrence, and J. T. Sheridan, “Refractive elements produced in photopolymer layers,” J. Mater. Sci. 40, 4129–4132(2005).
[CrossRef]

J. Mod. Opt.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929–1939(1994).
[CrossRef]

J. Nanosci. Nanotech.

J. T. Sheridan, M. R. Gleeson, C. E. Close, and J. V. Kelly, “Optical response of photopolymer materials for holographic data storage applications,” J. Nanosci. Nanotech. 7, 232–242 (2007).
[CrossRef]

J. Opt.

T. Babeva, D. Mackey, I. Naydenova, S. Martin, and V. Toal, “Study of the photoinduced surface relief modulation in photopolymers caused by illumination with a Gaussian beam of light,” J. Opt. 12, 124011 (2010).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. A: Pure Appl. Opt. 3, 20–25 (2001).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Adjusted intensity non-local diffusion model of photopolymer grating formation,” J. Opt. Soc. Am. B 19, 621–629 (2002).
[CrossRef]

J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuno, “Holographic photopolymer materials: nonlocal polymerisation-driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22, 407–416 (2005).
[CrossRef]

M. R. Gleeson and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part I. Modelling,” J. Opt. Soc. Am. B 26, 1736–1745 (2009).
[CrossRef]

M. R. Gleeson, S. Liu, R. R. McLeod, and J. T. Sheridan, “Nonlocal photopolymerization kinetics including multiple termination mechanisms and dark reactions. Part II. Experimental validation,” J. Opt. Soc. Am. B 26, 1746–1754 (2009).
[CrossRef]

T. Babeva, I. Naydenova, D. Mackey, S. Martin, and V. Toal, “Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer,” J. Opt. Soc. Am. B 27, 197–203 (2010).
[CrossRef]

S. Liu, M. R. Gleeson, and J. T. Sheridan, “Analysis of the photoabsorptive behavior of two different photosensitisers in a photopolymer material,” J. Opt. Soc. Am. B 26, 528–536(2009).
[CrossRef]

M. R. Gleeson, J. V. Kelly, C. E. Close, F. T. O’Neill, and J. T. Sheridan, “The effects of absorption and inhibition during grating formation in photopolymer materials,” J. Opt. Soc. Am. B 23, 2079–2088 (2006).
[CrossRef]

J. Phys. Chem.

P. V. Kamat and M. A. Fox, “Photophysics and photochemistry of xanthene dyes in polymer solutions and films,” J. Phys. Chem. 88, 2297–2302 (1984).
[CrossRef]

Macromolecules

M. Antonietti, J. Coutandin, R. Grtutter, and H. Sillescu, “Diffusion of labeled macromolecules in molten polystyrenes studied by a holographic grating technique,” Macromolecules 17, 798–802 (1984).
[CrossRef]

J. Zhang, C. H. Wang, and D. Ehlich, “Investigation of the mass diffusion of camphorquinone in amorphous poly(methyl methacrylate) and poly(tert-butyl-methacrylate) hosts by the induced holographic grating relaxation technique,” Macromolecules 19, 1390–1394 (1986).
[CrossRef]

C. H. Wang and J. L. Xia, “Holographic grating studies of the diffusion process of camphorquinone in polycarbonate above and below tg,” Macromolecules 21, 3519–3523(1988).
[CrossRef]

D. Ehlich and H. Sillescu, “Tracer diffusion at the glass transition,” Macromolecules 23, 1600–1610 (1990).
[CrossRef]

J. Xia and C. H. Wang, “Holographic grating relaxation studies of probe diffusion in a polymer blend,” Macromolecules 32, 5655–5659 (1999).
[CrossRef]

A. V. Veniaminov and H. Sillescu, “Polymer and dye probe diffusion in poly(methyl methacrylate) below the glass transition studied by forced Rayleigh scattering,” Macromolecules 32, 1828–1837 (1999).
[CrossRef]

S. Liu, M. R. Gleeson, J. Guo, and J. T. Sheridan, “High intensity response of photopolymer materials for holographic grating formation,” Macromolecules 43, 9462–9472 (2010).
[CrossRef]

Opt. Express

Opt. Lett.

Optik (Jena)

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Automated recording and testing of holographic optical element arrays,” Optik (Jena) 111, 459–467 (2000).

J. R. Lawrence, F. T. O’Neill, and J. T. Sheridan, “Phtopolymer holographic recording material,” Optik (Jena) 112, 449–463(2001).
[CrossRef]

J. T. Sheridan, “Stacked volume holographic gratings. Part I. Transmission gratings in series,” Optik (Jena) 95, 73–80 (1993).

Phys. At. Nucl.

L. M. C. Sagis, “Generalised curvature expansion for the surface internal energy,” Phys. At. Nucl. 246, 591–608 (1997).
[CrossRef]

Phys. Lett. A

S. Abe and J. T. Sheridan, “Curvature correction model of droplet profiles,” Phys. Lett. A 253, 317–321 (1999).
[CrossRef]

Proc. SPIE

S. Blaya, L. Carretero, P. Acebal, R. F. Madrigal, A. Murciano, M. Ulibarrena, and A. Fimia, “Analysis of the diffusion processes in dry photopolymerizable holographic recording materials,” Proc. SPIE 5827, 128–139 (2005).
[CrossRef]

Semicond. Phys. Quantum Electron. Optoelectron.

H. M. Karpov, V. V. Obukhovsky, and T. N. Smirnova, “Generalized model of holographic recording in photopolymer material,” Semicond. Phys. Quantum Electron. Optoelectron. 2, 66–70(1999).

Other

J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University, 1975).

J. Crank and G. S. Park, Diffusion in Polymers, 1st ed.(Academic, 1968).

S. Wolfram, “Mathematica,” www.wolfram.com/mathematica.

R. R. A. Syms, Practical Volume Holography (Clarendon, 1990).

R. Petit, Electromagnetic Theory of Gratings (Springer-Verlag, 1980).
[CrossRef]

J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2005).

C. E. Close, M. R. Gleeson, D. A. Mooney, and J. T. Sheridan, “Monomer diffusion rates in photopolymer material: part II: high frequency gratings and bulk diffusion,” J. Opt. Soc. Am. B, doc. ID 136413 (posted 5 January 2011, in press).

R. K. Kostuk, J. Castro, and D. Zhang, “Holographic low concentration ratio solar concentrators,” in Frontiers in Optics, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FMB3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Setup for adjusting period and recording grating.

Fig. 2
Fig. 2

Images taken with the CCD camera of the recording patterns, Λ = { 74 , 148 , 311 } μm .

Fig. 3
Fig. 3

Case I: replay of the index variation grating only.

Fig. 4
Fig. 4

Case II: simultaneous replay of the index variation and the surface relief gratings.

Fig. 5
Fig. 5

Cases I and II: the zeroth-order diffraction efficiencies plotted as a function of the index modulation, n m , and surface relief grating height, h. Dashed line indicates where, in Case II, no diffraction to higher orders occurs. Solid line indicates the Case I evolution of the zeroth order.

Fig. 6
Fig. 6

Evolution of the zeroth and first diffraction orders for Cases I and II where the recording intensity is 0.4 mW / cm 2 .

Fig. 7
Fig. 7

Arguments of the Bessel function μ i ( t ) for zeroth and first order for Cases I and II, where the recording intensity is 0.4 mW / cm 2

Fig. 8
Fig. 8

Evolution of zeroth order for Cases I and II with a recording intensity of 0.4 mW / cm 2 with the corresponding natural logarithm of [ η ( t ) η ( t final ) ] shown in the inset.

Fig. 9
Fig. 9

Natural logarithm of [ n m ( t ) n m ( t final ) ] and Case II with a recording intensity of 0.4 mW / cm 2 .

Fig. 10
Fig. 10

Evolution during exposure of μ 1 , m I ( t ) for Case I (left axis) and h ( t ) for Case II (right axis). Triangles indicate the fitted curves, while circles and diamonds indicate experimental results.

Fig. 11
Fig. 11

Fits and experiment for zeroth order for Cases I and II. Squares and triangles indicate the fitted curves, while stars and diamonds indicate experimental results.

Tables (1)

Tables Icon

Table 1 Monomer Diffusion Rates Obtained for Cases I and II for Different Temperatures, Humidities, and Periods a

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

ρ = λ 2 Λ 2 n av n m ,
sin θ i = sin θ 0 + i λ / Λ .
T m ( x , t ) = exp { + j 2 π λ [ n av + n m ( t ) cos ( K x ) ] d } ,
T m ( x , t ) = exp { + j 2 π n av d λ } × i = N + N J i [ μ m ( t ) ] exp ( + j n K x ) ,
μ m ( t ) = 2 π n m ( t ) d λ .
η i , m I ( t ) = I i , m I I i n = | J i [ μ m ( t ) ] | 2 ,
T S ( x , t ) = exp { + j 2 π ( n av + n a ) h ( t ) 2 λ } × exp { + j 2 π ( n av n a ) h ( t ) 2 λ cos ( K x ) } ,
T Tot ( x , t ) = exp { + j 2 π [ 2 n av ( t ) [ d h ( t ) ] + ( n av + n a ) h ( t ) ] 2 λ } exp { + j μ Tot ( t ) cos ( K x ) } ,
μ Tot ( t ) = π λ { 2 n m ( t ) [ d h ( t ) ] + ( n av n a ) h ( t ) } .
T Tot ( x , t ) = exp { + j 2 π [ 2 n av [ d h ( t ) ] + ( n av + n a ) h ( t ) ] 2 λ } i = N + N J i [ μ Tot ( t ) ] exp ( + j K x ) .
η i , Tot ( t ) = [ I i , Tot II I in ] = { J i [ μ Tot ( t ) ] } 2 ,
n m ( t ) = n m ( t ) + Δ n m exp [ α m t ] ,
ln [ n m ( t ) n m ( t final ) ] = ln [ Δ n m ] α m t ,
C ( x , t ) t = D m 2 C ( x , t ) x 2 ,
C ( x , 0 ) = C AV + C a cos [ K x ] ,
1 Λ 0 Λ C ( x , t ) d t = C AV .
C ( x , t ) = C AV + C a exp [ D m ( 2 π Λ ) 2 t ] cos [ 2 π x Λ ] .
Δ n m exp [ α m t ] C a exp [ D m ( 2 π Λ ) 2 t ] ,
α m = D m K 2 = D m ( 2 π Λ ) 2 .
n m ( t ) = δ m [ 1 exp ( β m t ) ] .
h ( t ) = δ s [ 1 exp ( β s t ) ]

Metrics