M. Luo and Q. H. Liu, “Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method,” J. Opt. Soc. Am. A 26, 1598–1605 (2009).

[CrossRef]

M. Luo and Q. H. Liu, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 056702 (2009).

[CrossRef]

M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009).

[CrossRef]

D. Lockau, L. Zschiedrich, and S. Burger, “Accurate simulation of light transmission through subwavelength apertures in metal films,” J. Opt. A Pure Appl. Opt. 11, 114013 (2009).

[CrossRef]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009).

[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609(2009).

[CrossRef]

B. G. Ward, “Finite element analysis of photonic crystal rods with inhomogeneous anisotropic refractive index tensor,” IEEE J. Quantum Electron. 44, 150–156 (2008).

[CrossRef]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).

[CrossRef]

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15, 8163–8169 (2007).

[CrossRef]
[PubMed]

A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).

[CrossRef]

P. Sotirelis and J. D. Albrecht, “Numerical simulation of photonic crystal defect modes using unstructured grids and Wannier functions,” Phys. Rev. B 76, 075123 (2007).

[CrossRef]

J.-H. Lee and Q. H. Liu, “A 3-D spectral-element time-domain method for electromagnetic simulation,” IEEE Trans. Microwave Theory Tech. 55, 983–991 (2007).

[CrossRef]

J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006).

[CrossRef]

L. Lin, R. J. Reeves, and R. J. Blaikie, “Surface-plasmon-enhanced light transmission through planar metallic films,” Phys. Rev. B 74, 155407 (2006).

[CrossRef]

G. Granet and L. Li, “Convincingly converged results for highly conducting periodically perforated thin films with square symmetry,” J. Opt. A 8, 546–549 (2006).

[CrossRef]

J.-H. Lee and Q. H. Liu, “An efficient 3-D spectral element method for Schrodinger equation in nanodevice simulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1848–1858(2005).

[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).

[CrossRef]
[PubMed]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004).

[CrossRef]

M. M. Botha and J.-M. Jin, “On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis,” IEEE Trans. Antenn. Propag. 52, 3037–3047 (2004).

[CrossRef]

Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antenn. Wireless Propag. Lett. 1, 131–134 (2002).

[CrossRef]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

[CrossRef]

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).

[CrossRef]

A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion,” J. Comput. Phys. 54, 468–488 (1984).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[CrossRef]

P. Sotirelis and J. D. Albrecht, “Numerical simulation of photonic crystal defect modes using unstructured grids and Wannier functions,” Phys. Rev. B 76, 075123 (2007).

[CrossRef]

L. Lin, R. J. Reeves, and R. J. Blaikie, “Surface-plasmon-enhanced light transmission through planar metallic films,” Phys. Rev. B 74, 155407 (2006).

[CrossRef]

M. M. Botha and J.-M. Jin, “On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis,” IEEE Trans. Antenn. Propag. 52, 3037–3047 (2004).

[CrossRef]

D. Lockau, L. Zschiedrich, and S. Burger, “Accurate simulation of light transmission through subwavelength apertures in metal films,” J. Opt. A Pure Appl. Opt. 11, 114013 (2009).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).

[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).

[CrossRef]
[PubMed]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[CrossRef]

G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, 2001).

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009).

[CrossRef]

A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).

[CrossRef]

G. Granet and L. Li, “Convincingly converged results for highly conducting periodically perforated thin films with square symmetry,” J. Opt. A 8, 546–549 (2006).

[CrossRef]

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).

M. M. Botha and J.-M. Jin, “On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis,” IEEE Trans. Antenn. Propag. 52, 3037–3047 (2004).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[CrossRef]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).

[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).

[CrossRef]
[PubMed]

K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26, 1472–1478 (2008).

[CrossRef]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).

[CrossRef]
[PubMed]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009).

[CrossRef]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004).

[CrossRef]

J.-H. Lee and Q. H. Liu, “A 3-D spectral-element time-domain method for electromagnetic simulation,” IEEE Trans. Microwave Theory Tech. 55, 983–991 (2007).

[CrossRef]

J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006).

[CrossRef]

J.-H. Lee and Q. H. Liu, “An efficient 3-D spectral element method for Schrodinger equation in nanodevice simulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1848–1858(2005).

[CrossRef]

M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004).

[CrossRef]

G. Granet and L. Li, “Convincingly converged results for highly conducting periodically perforated thin films with square symmetry,” J. Opt. A 8, 546–549 (2006).

[CrossRef]

M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009).

[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609(2009).

[CrossRef]

L. Lin, R. J. Reeves, and R. J. Blaikie, “Surface-plasmon-enhanced light transmission through planar metallic films,” Phys. Rev. B 74, 155407 (2006).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

M. Luo, Q. H. Liu, and J. Guo, “A spectral element method calculation of extraordinary light transmission through periodic subwavelength slits,” J. Opt. Soc. Am. B 27, 560–566(2010).

[CrossRef]

M. Luo and Q. H. Liu, “Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method,” J. Opt. Soc. Am. A 26, 1598–1605 (2009).

[CrossRef]

M. Luo and Q. H. Liu, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 056702 (2009).

[CrossRef]

M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009).

[CrossRef]

J.-H. Lee and Q. H. Liu, “A 3-D spectral-element time-domain method for electromagnetic simulation,” IEEE Trans. Microwave Theory Tech. 55, 983–991 (2007).

[CrossRef]

J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006).

[CrossRef]

J.-H. Lee and Q. H. Liu, “An efficient 3-D spectral element method for Schrodinger equation in nanodevice simulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1848–1858(2005).

[CrossRef]

Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antenn. Wireless Propag. Lett. 1, 131–134 (2002).

[CrossRef]

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).

[CrossRef]

D. Lockau, L. Zschiedrich, and S. Burger, “Accurate simulation of light transmission through subwavelength apertures in metal films,” J. Opt. A Pure Appl. Opt. 11, 114013 (2009).

[CrossRef]

M. Luo, Q. H. Liu, and J. Guo, “A spectral element method calculation of extraordinary light transmission through periodic subwavelength slits,” J. Opt. Soc. Am. B 27, 560–566(2010).

[CrossRef]

M. Luo and Q. H. Liu, “Accurate determination of band structures of two-dimensional dispersive anisotropic photonic crystals by the spectral element method,” J. Opt. Soc. Am. A 26, 1598–1605 (2009).

[CrossRef]

M. Luo and Q. H. Liu, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 056702 (2009).

[CrossRef]

M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009).

[CrossRef]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

[CrossRef]

A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).

[CrossRef]

A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).

[CrossRef]

A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion,” J. Comput. Phys. 54, 468–488 (1984).

[CrossRef]

L. Lin, R. J. Reeves, and R. J. Blaikie, “Surface-plasmon-enhanced light transmission through planar metallic films,” Phys. Rev. B 74, 155407 (2006).

[CrossRef]

A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

[CrossRef]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009).

[CrossRef]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

[CrossRef]

P. Sotirelis and J. D. Albrecht, “Numerical simulation of photonic crystal defect modes using unstructured grids and Wannier functions,” Phys. Rev. B 76, 075123 (2007).

[CrossRef]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

[CrossRef]

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009).

[CrossRef]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004).

[CrossRef]

B. G. Ward, “Finite element analysis of photonic crystal rods with inhomogeneous anisotropic refractive index tensor,” IEEE J. Quantum Electron. 44, 150–156 (2008).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006).

[CrossRef]

M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

D. Lockau, L. Zschiedrich, and S. Burger, “Accurate simulation of light transmission through subwavelength apertures in metal films,” J. Opt. A Pure Appl. Opt. 11, 114013 (2009).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

Q. H. Liu, “A pseudospectral frequency-domain (PSFD) method for computational electromagnetics,” IEEE Antenn. Wireless Propag. Lett. 1, 131–134 (2002).

[CrossRef]

B. G. Ward, “Finite element analysis of photonic crystal rods with inhomogeneous anisotropic refractive index tensor,” IEEE J. Quantum Electron. 44, 150–156 (2008).

[CrossRef]

M. N. Vouvakis, S.-C. Lee, K. Zhao, and J.-F. Lee, “A symmetric FEM-IE formulation with a single-level IE-QR algorithm for solving electromagnetic radiation and scattering problems,” IEEE Trans. Antenn. Propag. 52, 3060–3070 (2004).

[CrossRef]

M. M. Botha and J.-M. Jin, “On the variational formulation of hybrid finite element-boundary integral techniques for electromagnetic analysis,” IEEE Trans. Antenn. Propag. 52, 3037–3047 (2004).

[CrossRef]

J.-H. Lee and Q. H. Liu, “An efficient 3-D spectral element method for Schrodinger equation in nanodevice simulation,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1848–1858(2005).

[CrossRef]

J.-H. Lee, T. Xiao, and Q. H. Liu, “A 3-D spectral-element method using mixed-order curl conforming vector basis functions for electromagnetic fields,” IEEE Trans. Microwave Theory Tech. 54, 437–444 (2006).

[CrossRef]

J.-H. Lee and Q. H. Liu, “A 3-D spectral-element time-domain method for electromagnetic simulation,” IEEE Trans. Microwave Theory Tech. 55, 983–991 (2007).

[CrossRef]

A. T. Patera, “A spectral element method for fluid dynamics: laminar flow in a channel expansion,” J. Comput. Phys. 54, 468–488 (1984).

[CrossRef]

G. Granet and L. Li, “Convincingly converged results for highly conducting periodically perforated thin films with square symmetry,” J. Opt. A 8, 546–549 (2006).

[CrossRef]

D. Lockau, L. Zschiedrich, and S. Burger, “Accurate simulation of light transmission through subwavelength apertures in metal films,” J. Opt. A Pure Appl. Opt. 11, 114013 (2009).

[CrossRef]

Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microw. Opt. Technol. Lett. 15, 158–165 (1997).

[CrossRef]

J. Chen, Z. Li, S. Yue, and Q. Gong, “Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides,” Opt. Express 17, 23603–23609(2009).

[CrossRef]

C. J. Alleyne, A. G. Kirk, R. C. McPhedran, N.-A. P. Nicorovici, and D. Maystre, “Enhanced SPR sensitivity using periodic metallic structures,” Opt. Express 15, 8163–8169 (2007).

[CrossRef]
[PubMed]

K. M. Byun, S. J. Kim, and D. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express 13, 3737–3742 (2005).

[CrossRef]
[PubMed]

T. Koschny, P. Marko, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, “Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials,” Phys. Rev. B 71, 245105 (2005).

[CrossRef]

D. R. Smith, S. Schultz, P. Marko, and C. M. Soukoulis, “Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients,” Phys. Rev. B 65, 195104 (2002).

[CrossRef]

L. Lin, R. J. Reeves, and R. J. Blaikie, “Surface-plasmon-enhanced light transmission through planar metallic films,” Phys. Rev. B 74, 155407 (2006).

[CrossRef]

A. Mary, S. G. Rodrigo, L. Martn-Moreno, and F. J. Garca-Vidal, “Theory of light transmission through an array of rectangular holes,” Phys. Rev. B 76, 195414 (2007).

[CrossRef]

P. Sotirelis and J. D. Albrecht, “Numerical simulation of photonic crystal defect modes using unstructured grids and Wannier functions,” Phys. Rev. B 76, 075123 (2007).

[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).

[CrossRef]

M. Luo and Q. H. Liu, “Spectral element method for band structures of three-dimensional anisotropic photonic crystals,” Phys. Rev. E 80, 056702 (2009).

[CrossRef]

M. Luo, Q. H. Liu, and Z. Li, “Spectral element method for band structures of two-dimensional anisotropic photonic crystals,” Phys. Rev. E 79, 026705 (2009).

[CrossRef]

C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic metamaterials at telecommunication and visible frequencies,” Phys. Rev. Lett. 95, 203901 (2005).

[CrossRef]
[PubMed]

I. Sersic, M. Frimmer, E. Verhagen, and A. F. Koenderink, “Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays,” Phys. Rev. Lett. 103, 213902(2009).

[CrossRef]

A. Taflove and S. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2000).

G. C. Cohen, Higher-Order Numerical Methods for Transient Wave Equations (Springer, 2001).