Abstract

We report on a noncollinear red–green–blue (RGB) laser light source using a two-dimensional nonlinear photonic quasicrystal. The red and blue lights result from a green light pumped optical parametric generation process cascading two frequency doubling processes in a single-pass setup. Together with the residual green light, two sets of RGB lights were observed in a wide temperature range, which indicates a practical method for constructing a compact multiwavelength laser light source.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  2. M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
    [CrossRef]
  3. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
    [CrossRef]
  4. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
    [CrossRef]
  5. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [CrossRef]
  6. S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
    [CrossRef]
  7. Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
    [CrossRef]
  8. P. C. Pooser and O. Pfister, “Observation of triply coincident nonlinearities in periodically poled KTiOPO4,” Opt. Lett. 30, 2635–2637 (2005).
    [CrossRef] [PubMed]
  9. O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
    [CrossRef]
  10. V. Berger, ““Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
    [CrossRef]
  11. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
    [CrossRef] [PubMed]
  12. P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
    [CrossRef]
  13. L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
    [CrossRef]
  14. N. Fujioka, S. Ashihara, H. Ono, T. Shimura, and K. Kuroda, “Cascaded third-harmonic generation of ultrashort optical pulses in two-dimensional quasi-phase-matching gratings,” J. Opt. Soc. Am. B 24, 2394–2405 (2007).
    [CrossRef]
  15. P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
    [CrossRef] [PubMed]
  16. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate,” Opt. Lett. 33, 2791–2793 (2008).
    [CrossRef] [PubMed]
  17. R. Penrose, in The Physics of Quasicrystals, P.J.Steinhardt and S.Ostund, eds. (World Scientific, 1987), App. I.
  18. B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
    [CrossRef]
  19. R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett. 30, 424–426 (2005).
    [CrossRef] [PubMed]
  20. R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
    [CrossRef] [PubMed]
  21. D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988).
    [CrossRef]
  22. F. Gahler and J. Rhyner, “Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings,” J. Phys. A 19, 267–277 (1986).
    [CrossRef]
  23. A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921(2007).
    [CrossRef]
  24. A. Bahabad, A. Ganany-Padowicz, and A. Arie, “Enginneering two-dimensional nonlinear photonic quasi-crystals,” Opt. Lett. 33, 1386–1388 (2008).
    [CrossRef] [PubMed]
  25. J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985).
    [CrossRef]

2008 (2)

2007 (2)

2005 (4)

R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett. 30, 424–426 (2005).
[CrossRef] [PubMed]

P. C. Pooser and O. Pfister, “Observation of triply coincident nonlinearities in periodically poled KTiOPO4,” Opt. Lett. 30, 2635–2637 (2005).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

2004 (2)

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

2003 (2)

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

2000 (1)

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

1999 (1)

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

1998 (1)

V. Berger, ““Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

1997 (3)

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

1993 (1)

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

1988 (1)

D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988).
[CrossRef]

1986 (1)

F. Gahler and J. Rhyner, “Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings,” J. Phys. A 19, 267–277 (1986).
[CrossRef]

1985 (1)

J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Arie, A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Ashihara, S.

Bahabad, A.

Batchko, R. G.

Berger, V.

V. Berger, ““Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bratfalean, R. T.

Broderick, N. G. R.

R. T. Bratfalean, A. C. Peacock, N. G. R. Broderick, K. Gallo, and R. Lewen, “Harmonic generation in a two-dimensional nonlinear quasi-crystal,” Opt. Lett. 30, 424–426 (2005).
[CrossRef] [PubMed]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Byer, R. L.

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Cheng, B. Y.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Fejer, M. M.

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Feng, S.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

Fujioka, N.

Gahler, F.

F. Gahler and J. Rhyner, “Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings,” J. Phys. A 19, 267–277 (1986).
[CrossRef]

Gallo, K.

Ganany-Padowicz, A.

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Hanna, D. C.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

He, J. L.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

Ho, T.-L.

D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988).
[CrossRef]

Hsu, C.-C.

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Hundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Jennings, G.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

Ji, S. H.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

Kivshar, Y. S.

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Kuroda, K.

Leng, H. Y.

Levine, D.

J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985).
[CrossRef]

Lewen, R.

Lifshitz, R.

A. Bahabad, N. Voloch, A. Arie, and R. Lifshitz, “Experimental confirmation of the general solution to the multiple-phase-matching problem,” J. Opt. Soc. Am. B 24, 1916–1921(2007).
[CrossRef]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

Ma, B. Q.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

Mermin, N. D.

D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988).
[CrossRef]

Miller, G. D.

Ming, N. B.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Ni, P. G.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

Offerhaus, H. L.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Ono, H.

Peacock, A. C.

Peng, L.-H.

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Penrose, R.

R. Penrose, in The Physics of Quasicrystals, P.J.Steinhardt and S.Ostund, eds. (World Scientific, 1987), App. I.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Pfister, O.

P. C. Pooser and O. Pfister, “Observation of triply coincident nonlinearities in periodically poled KTiOPO4,” Opt. Lett. 30, 2635–2637 (2005).
[CrossRef] [PubMed]

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

Pooser, P. C.

Pooser, R.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

Qin, Y. Q.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Rabson, D. A.

D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988).
[CrossRef]

Rhyner, J.

F. Gahler and J. Rhyner, “Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings,” J. Phys. A 19, 267–277 (1986).
[CrossRef]

Richardson, D. J.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Ross, G. W.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Saltiel, S. M.

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Sheng, Y.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Shih, Y.-C.

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Shimura, T.

Socolar, J. E. S.

J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985).
[CrossRef]

Sternhardt, P. J.

J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985).
[CrossRef]

Sukhorukov, A. A.

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Sun, J.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

Tulloch, W. M.

Voloch, N.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Wang, H. T.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

Wang, J. F.

Wang, T.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Wang, X. H.

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

Wang, Y. Q.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Weise, D. R.

Xie, D.

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

Xie, Z. D.

Xu, P.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef] [PubMed]

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Yu, X. Q.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef] [PubMed]

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

Zhang, D. Z.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

Zhao, J. S.

Zhu, S. N.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red-green-blue light-source generation based on a hexagonally poled lithium tantalate,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef] [PubMed]

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Zhu, Y. Y.

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Acta Crystallogr. (1)

D. A. Rabson, T.-L. Ho, and N. D. Mermin, “Aperiodic tilings with non-symmorphic space groups p2jgm,” Acta Crystallogr. 44, 678–688 (1988).
[CrossRef]

Appl. Phys. Lett. (4)

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

P. G. Ni, B. Q. Ma, X. H. Wang, B. Y. Cheng, and D. Z. Zhang, “Second-harmonic generation in two-dimensional periodically poled lithium niobate using second-order quasiphase matching,” Appl. Phys. Lett. 82, 4230–4232 (2003).
[CrossRef]

L.-H. Peng, C.-C. Hsu, and Y.-C. Shih, “Second-harmonic green generation from two-dimensional χ(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Hundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. A (1)

F. Gahler and J. Rhyner, “Equivalence of the generalized grid and projection methods for the construction of quasiperiodic tilings,” J. Phys. A 19, 267–277 (1986).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A (1)

O. Pfister, S. Feng, G. Jennings, R. Pooser, and D. Xie, “Multipartite continuous-variable entanglement from concurrent nonlinearities,” Phys. Rev. A 70, 020302 (2004).
[CrossRef]

Phys. Rev. B (1)

J. E. S. Socolar, P. J. Sternhardt, and D. Levine, “Quasicrystals with arbitrary orientational symmetry,” Phys. Rev. B 32, 5547–5550 (1985).
[CrossRef]

Phys. Rev. E (1)

Y. S. Kivshar, A. A. Sukhorukov, and S. M. Saltiel, “Two-color multistep cascading and parametric soliton-induced waveguides,” Phys. Rev. E 60, R5056–R5059 (1999).
[CrossRef]

Phys. Rev. Lett. (5)

P. Xu, S. H. Ji, S. N. Zhu, X. Q. Yu, J. Sun, H. T. Wang, J. L. He, Y. Y. Zhu, and N. B. Ming, “Conical second harmonic generation in a two-dimensional χ(2) photonic crystal: a hexagonally poled LiTaO3 crystal,” Phys. Rev. Lett. 93, 133904 (2004).
[CrossRef] [PubMed]

R. Lifshitz, A. Arie, and A. Bahabad, “Photonic quasicrystals for nonlinear optical frequency conversion,” Phys. Rev. Lett. 95, 133901 (2005).
[CrossRef] [PubMed]

V. Berger, ““Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84, 4345–4348 (2000).
[CrossRef] [PubMed]

S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, H. F. Wang, C. Z. Ge, and N. B. Ming, “Experimental realization of second harmonic generation in a Fibonacci optical superlattice of LiTaO3,” Phys. Rev. Lett. 78, 2752–2755 (1997).
[CrossRef]

Science (1)

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Other (1)

R. Penrose, in The Physics of Quasicrystals, P.J.Steinhardt and S.Ostund, eds. (World Scientific, 1987), App. I.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a)  + z face micrograph of the quasiperiodically poled LT after being slightly etched in HF acid. (b) Detailed view of the domain pattern, which gives three types of parallelograms.

Fig. 2
Fig. 2

(a) Reciprocal space of the quasiperiodically poled LT. (b) The phase-matching geometry for multiple frequency conversions.

Fig. 3
Fig. 3

Temperature-dependent curve for the OPG process. Insets, photographs of the signal harmonics participant by G 2 or G 2 and the idle harmonics participant by G 3 or G 3 when filtering out most of the pump beam.

Fig. 4
Fig. 4

Measured temperature tuning curves for each set of the frequency self-doubling process (a) using G 2 and G 3 and (b) using G 2 and G 3 .

Fig. 5
Fig. 5

Measured spectra of the blue and red lights at 166 ° C , respectively.

Tables (2)

Tables Icon

Table 1 Calculated Mismatch Vectors for Optical Parametric Generation and Frequency Doubling Processes

Tables Icon

Table 2 Detailed characteristics of the Tiling Vectors

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

K j = [ Δ k 11 Δ k 21 Δ k 31 Δ k 12 Δ k 22 Δ k 32 q 1 q 2 q 3 ] .
A j = [ a 11 a 21 a 31 a 12 a 22 a 32 b 1 b 2 b 3 ] .
a j = [ a 11 a 21 a 31 a 12 a 22 a 32 ] ,

Metrics