Abstract

We experimentally characterize the field confinement properties of various parallel-plate waveguide (PPWG) geometries in the terahertz spectral range. In contrast to infinite-width PPWGs with free-space diffraction along the unshielded direction, finite-width (and also tapered) PPWGs show well-confined THz fields at the output facet. Both the transverse field component, perpendicular to the inside surfaces, and the longitudinal component, parallel to the propagation direction, exhibit strong lateral confinement. We also observe an antisymmetric longitudinal field distribution across the air gap, analogous to the symmetric surface plasmon polariton mode observed in optical slot waveguides.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331–1333 (1998).
    [Crossref]
  2. S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
    [Crossref]
  3. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
    [Crossref]
  4. K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
    [Crossref]
  5. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
    [Crossref] [PubMed]
  6. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
    [Crossref]
  7. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
    [Crossref] [PubMed]
  8. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
    [Crossref]
  9. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
    [Crossref] [PubMed]
  10. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
    [Crossref]
  11. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
    [Crossref]
  12. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
    [Crossref]
  13. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
    [Crossref]
  14. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
    [Crossref]
  15. J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006).
    [Crossref]
  16. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
    [Crossref] [PubMed]
  17. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334–337 (2007).
    [Crossref] [PubMed]
  18. E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
    [Crossref] [PubMed]
  19. E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
    [Crossref] [PubMed]
  20. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
    [Crossref]
  21. J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nano. 7, 229–236 (2008).
    [Crossref]
  22. R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16, 20142–20148 (2008).
    [Crossref] [PubMed]
  23. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011(2003).
    [Crossref]
  24. N. Klein, P. Lahl, and U. Poppe, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98, 014910(2005).
    [Crossref]
  25. M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
    [Crossref]
  26. A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
    [Crossref]
  27. V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
    [Crossref]
  28. X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94, 181106 (2009).
    [Crossref]
  29. A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
    [Crossref] [PubMed]
  30. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
    [Crossref] [PubMed]
  31. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
    [Crossref]
  32. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse applications,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
    [Crossref]
  33. D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences (Springer-Verlag, 2002).
  34. R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microwave & Wireless Comp. Lett. 11, 444–446 (2001).
    [Crossref]
  35. J. R. Wait, “On the theory of shielded surface waves,” IEEE Trans. Microw. Theory Tech. 15, 410–414 (1967).
    [Crossref]
  36. H. M. Barlow, “New features of wave propagation not subject to cutoff between two parallel guiding surfaces,” Proc. IEEE 114, 421–427 (1967).
    [Crossref]
  37. H. M. Barlow, “High-frequency wave propagation between parallel surfaces very close together,” J. Phys. D: Appl. Phys. 6, 929–935 (1973).
    [Crossref]
  38. M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009).
    [Crossref] [PubMed]
  39. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [Crossref]
  40. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211(2004).
    [Crossref] [PubMed]
  41. Q. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett. 29, 1626–1628 (2004).
    [Crossref] [PubMed]
  42. V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
    [Crossref]
  43. B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photon. 1, 517–525 (2007).
    [Crossref]
  44. S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
    [Crossref]
  45. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
    [Crossref]

2010 (1)

2009 (7)

V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
[Crossref]

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[Crossref]

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94, 181106 (2009).
[Crossref]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse applications,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
[Crossref]

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009).
[Crossref] [PubMed]

2008 (6)

A. Rusina, M. Durach, K. A. Nelson, and M. I. Stockman, “Nanoconcentration of terahertz radiation in plasmonic waveguides,” Opt. Express 16, 18576–18589 (2008).
[Crossref]

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nano. 7, 229–236 (2008).
[Crossref]

R. Yang, M. A. G. Abushagur, and Z. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16, 20142–20148 (2008).
[Crossref] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[Crossref] [PubMed]

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

2007 (5)

B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photon. 1, 517–525 (2007).
[Crossref]

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[Crossref]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334–337 (2007).
[Crossref] [PubMed]

G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

2006 (5)

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006).
[Crossref] [PubMed]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

2005 (7)

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett. 30, 3359–3361 (2005).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[Crossref]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005).
[Crossref] [PubMed]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

N. Klein, P. Lahl, and U. Poppe, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98, 014910(2005).
[Crossref]

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

2004 (4)

2003 (2)

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011(2003).
[Crossref]

2002 (1)

D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences (Springer-Verlag, 2002).

2001 (3)

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microwave & Wireless Comp. Lett. 11, 444–446 (2001).
[Crossref]

S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[Crossref]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[Crossref]

1998 (1)

1973 (1)

H. M. Barlow, “High-frequency wave propagation between parallel surfaces very close together,” J. Phys. D: Appl. Phys. 6, 929–935 (1973).
[Crossref]

1967 (2)

J. R. Wait, “On the theory of shielded surface waves,” IEEE Trans. Microw. Theory Tech. 15, 410–414 (1967).
[Crossref]

H. M. Barlow, “New features of wave propagation not subject to cutoff between two parallel guiding surfaces,” Proc. IEEE 114, 421–427 (1967).
[Crossref]

Abushagur, M. A. G.

Almeida, V. R.

Arbel, D.

Astley, V.

V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
[Crossref]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[Crossref]

Atwater, H. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006).
[Crossref]

S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[Crossref]

Aussenegg, F. R.

Barlow, H. M.

H. M. Barlow, “High-frequency wave propagation between parallel surfaces very close together,” J. Phys. D: Appl. Phys. 6, 929–935 (1973).
[Crossref]

H. M. Barlow, “New features of wave propagation not subject to cutoff between two parallel guiding surfaces,” Proc. IEEE 114, 421–427 (1967).
[Crossref]

Barrios, C. A.

Bartal, G.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Brongersma, M. L.

R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004).
[Crossref]

S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[Crossref]

Burr, G. W.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

Capasso, F.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Catrysse, P. B.

Chen, H. T.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011(2003).
[Crossref]

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011(2003).
[Crossref]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Diehl, L.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Dionne, J. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006).
[Crossref]

Durach, M.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Edamura, T.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Fan, J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Fan, S.

Fischer, U. C.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

Fukui, M.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Genov, D. A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

Ginzburg, P.

Gong, M.

Gramotnev, D. K.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[Crossref]

Grischkowsky, D.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009).
[Crossref] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[Crossref]

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microwave & Wireless Comp. Lett. 11, 444–446 (2001).
[Crossref]

Grosjean, T.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

Han, Z.

Haraguchi, M.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

He, S.

Hu, Q.

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

Ishikawa, A.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

Jeon, T.-I.

M. Gong, T.-I. Jeon, and D. Grischkowsky, “THz surface wave collapse on coated metal surfaces,” Opt. Express 17, 17088–17101 (2009).
[Crossref] [PubMed]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

Kan, H.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Kersting, R.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011(2003).
[Crossref]

Kim, H. K.

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nano. 7, 229–236 (2008).
[Crossref]

Klein, N.

N. Klein, P. Lahl, and U. Poppe, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98, 014910(2005).
[Crossref]

Kohen, S.

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

Krenn, J. R.

Kuipers, L.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[Crossref] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334–337 (2007).
[Crossref] [PubMed]

Kurz, H.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Lahl, P.

N. Klein, P. Lahl, and U. Poppe, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98, 014910(2005).
[Crossref]

Leitner, A.

Lipson, M.

Liu, L.

Lu, X.

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94, 181106 (2009).
[Crossref]

Lu, Z.

Maier, S. A.

S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[Crossref]

Maletzky, T.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

Matsuzaki, Y.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Mendis, R.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[Crossref] [PubMed]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse applications,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
[Crossref]

V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
[Crossref]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[Crossref]

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microwave & Wireless Comp. Lett. 11, 444–446 (2001).
[Crossref]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[Crossref]

Mittleman, D.

D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences (Springer-Verlag, 2002).

Mittleman, D. M.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[Crossref] [PubMed]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse applications,” J. Opt. Soc. Am. B 26, A6–A13 (2009).
[Crossref]

V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
[Crossref]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[Crossref]

Nagel, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Nelson, K. A.

Ogawa, T.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Okamoto, T.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Orenstein, M.

Panepucci, R. R.

Pflügl, C.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Pile, D. F. P.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[Crossref]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Polman, A.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[Crossref] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334–337 (2007).
[Crossref] [PubMed]

Poppe, U.

N. Klein, P. Lahl, and U. Poppe, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98, 014910(2005).
[Crossref]

Quinten, M.

Rusina, A.

Selker, M. D.

Spasenovic, M.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

Stockman, M. I.

Sweatlock, L. A.

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006).
[Crossref]

Tanaka, K.

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Tanaka, M.

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

Verhagen, E.

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

E. Verhagen, A. Polman, and L. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express 16, 45–57 (2008).
[Crossref] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334–337 (2007).
[Crossref] [PubMed]

Vernon, K. C.

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Veronis, G.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

Wächter, M.

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

Wait, J. R.

J. R. Wait, “On the theory of shielded surface waves,” IEEE Trans. Microw. Theory Tech. 15, 410–414 (1967).
[Crossref]

Wang, Q. J.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Williams, B.

B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photon. 1, 517–525 (2007).
[Crossref]

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

Wuenschell, J.

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nano. 7, 229–236 (2008).
[Crossref]

Xu, Q.

Yamaguchi, K.

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

Yamanishi, M.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Yang, R.

Yu, N.

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Zhan, H.

H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010).
[Crossref] [PubMed]

V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
[Crossref]

Zhang, S.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

Zhang, W.

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94, 181106 (2009).
[Crossref]

Zhang, X.

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

Zia, R.

Ann. Phys. B (1)

K. Tanaka, G. W. Burr, T. Grosjean, T. Maletzky, and U. C. Fischer, “Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes,” Ann. Phys. B 93, 257–266 (2008).
[Crossref]

Appl. Phys. Lett. (9)

S. A. Maier, M. L. Brongersma, and H. A. Atwater, “Electromagnetic energy transport along arrays of closely spaced metal rods as an analogue to plasmonic devices,” Appl. Phys. Lett. 78, 16–18 (2001).
[Crossref]

K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003).
[Crossref]

D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two-dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87, 261114 (2005).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[Crossref]

M. Wächter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[Crossref]

V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009).
[Crossref]

X. Lu and W. Zhang, “Terahertz localized plasmonic properties of subwavelength ring and coaxial geometries,” Appl. Phys. Lett. 94, 181106 (2009).
[Crossref]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83, 3009–3011(2003).
[Crossref]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[Crossref]

IEEE Microwave & Wireless Comp. Lett. (1)

R. Mendis and D. Grischkowsky, “THz interconnect with low loss and low group velocity dispersion,” IEEE Microwave & Wireless Comp. Lett. 11, 444–446 (2001).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

J. R. Wait, “On the theory of shielded surface waves,” IEEE Trans. Microw. Theory Tech. 15, 410–414 (1967).
[Crossref]

IEEE Trans. Nano. (1)

J. Wuenschell and H. K. Kim, “Excitation and propagation of surface plasmons in a metallic nanoslit structure,” IEEE Trans. Nano. 7, 229–236 (2008).
[Crossref]

J. Appl. Phys. (6)

K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007).
[Crossref]

D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005).
[Crossref]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys. 100, 013101 (2006).
[Crossref]

V. Astley, H. Zhan, R. Mendis, and D. M. Mittleman, “A study of background signals in terahertz apertureless near-field microscopy and their use for scattering-probe imaging,” J. Appl. Phys. 105, 113117 (2009).
[Crossref]

N. Klein, P. Lahl, and U. Poppe, “A metal-dielectric antenna for terahertz near-field imaging,” J. Appl. Phys. 98, 014910(2005).
[Crossref]

S. Kohen, B. Williams, and Q. Hu, “Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators,” J. Appl. Phys. 97, 053106 (2005).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D: Appl. Phys. (1)

H. M. Barlow, “High-frequency wave propagation between parallel surfaces very close together,” J. Phys. D: Appl. Phys. 6, 929–935 (1973).
[Crossref]

Nano Lett. (1)

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7, 334–337 (2007).
[Crossref] [PubMed]

Nat. Photon. (2)

B. Williams, “Terahertz quantum-cascade lasers,” Nat. Photon. 1, 517–525 (2007).
[Crossref]

N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor laser by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008).
[Crossref]

Opt. Express (6)

Opt. Lett. (6)

Phys. Rev. B (1)

J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407(2006).
[Crossref]

Phys. Rev. Lett. (4)

E. Verhagen, M. Spasenovic, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009).
[Crossref] [PubMed]

A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, and X. Zhang, “Deep subwavelength terahertz waveguides using gap magnetic plasmon,” Phys. Rev. Lett. 102, 043904 (2009).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[Crossref] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004).
[Crossref] [PubMed]

Proc. IEEE (1)

H. M. Barlow, “New features of wave propagation not subject to cutoff between two parallel guiding surfaces,” Proc. IEEE 114, 421–427 (1967).
[Crossref]

Other (1)

D. Mittleman, Sensing with Terahertz Radiation, Springer Series in Optical Sciences (Springer-Verlag, 2002).

Supplementary Material (1)

» Media 1: AVI (4039 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic of the experimental setup showing the THz receiver scanning the output facet of an untapered PPWG. The field is directly detected using a fiber-coupled photoconductive antenna, with an aperture in front of the substrate lens to improve the spatial resolution. The antenna is oriented so as to be sensitive to the y component of the field. The left inset shows the input coupling configuration for two PPWGs with different widths (10 and 1 cm ). The right inset gives a typical spectrum of a detected signal. (b) Schematic for the tapered PPWGs. The input coupling configuration and the THz detection are all kept the same as for the setup in (a), including the aperture. The parameters describing the size of the input and output facet, w in and w out , the plate width, and b in and b out , the plate separation, are shown. (c) Modified schematic for the tapered PPWGs. In this case, an aperture-based method provides inadequate spatial resolution, so a scattering-probe technique is employed. Here, the measurement is sensitive to the z component of the electric field. The field can be characterized by scanning the position of the probe.

Fig. 2
Fig. 2

Two-dimensional profiles of the THz electric field (peak-to-peak amplitude) measured at the output facet of the 10 cm wide PPWG with a plate separation (a)  b = 10 and (b)  5 mm . (c) One-dimensional x-axis scans for the 10 cm wide PPWG for three different plate separations, b = 10 , 5, and 2 mm . (d) Vertical profiles of the field along the black dashed lines in (a) and (b) showing the nonuniform profiles along the y direction.

Fig. 3
Fig. 3

Two-dimensional profiles of the THz electric field (peak-to-peak amplitude) measured at the output facet of the 1 cm wide PPWG with a plate separation of (a)  b = 10 and (b)  5 mm . Here, the edge plasmons are clearly observed at the four corners corresponding to the two metal plates. (c) One-dimensional x-axis scans for the 1 cm wide PPWG for three different plate separations, b = 10 , 5, and 2 mm . (d) Vertical profiles along the black dashed lines in (a), showing the field enhancement near the corners, which do not appear at the center.

Fig. 4
Fig. 4

Energy confinement factor as a function of the plate separation. The insets schematically illustrate how this confinement factor is defined. The curve is a fit to an exponential dependence, converging to unity at a zero plate separation.

Fig. 5
Fig. 5

(a) One-dimensional x-axis scans (centered along the y direction) of the THz field (peak-to-peak amplitude) from the 10 cm long tapered PPWGs (S1–S4) with b = 1 mm . (b) The dependence of the FWHM of the x-axis scans on the output width along the x axis, at plate separations of b = 10 , 5, 2, and 1 mm for S1–S4.

Fig. 6
Fig. 6

(a) One-dimensional x-axis scans (centered along the y direction) of the THz field (peak-to-peak amplitude) from the 25 cm long tapered PPWGs (L1–L4) with b = 1 mm . (b) The dependence of the FWHM of the x-axis scans on the output width along the x axis, at plate separations of b = 10 , 5, 2, and 1 mm for L1–L4 and for the untapered waveguide.

Fig. 7
Fig. 7

(a) THz output field (peak-to-peak amplitude) distribution along the horizontal axis at y = 0 mm , localized to roughly λ / 2 in dimension from the tapered PPWG M1 with w out = 120 μm and b out = 100 μm . The inset gives a typical detected spectrum. (b) 2D field profile (peak-to-peak amplitude) measured at the output of the waveguide.

Fig. 8
Fig. 8

(a) 1D x-axis scan, (b) 1D z-axis scan fit to a theoretical (solid red) curve, and (c) 1D y-axis scan, all measured (peak-to-peak amplitude) at the end of the 25 cm long tapered PPWG M2 with w out = 100 μm and b out = 110 μm . (d) The time delay of E z is shown along the y axis at x = 0 mm .

Fig. 9
Fig. 9

Two-dimensional field map (peak-to-peak amplitude) in the (a)  x z , (b)  x y , and (c)  y z planes of E z at the end of the tapered PPWG M2.

Fig. 10
Fig. 10

Evolution of the electric field ( E z ) map (Media 1) in the x y plane at the output facet of the waveguide. The thin white line shows the contours of two metal plates. The horizontal direction is the x axis, and the vertical direction is the y axis.

Fig. 11
Fig. 11

Line scans (peak-to-peak amplitude) along the x axis at the output of tapered waveguides M2–M4, with decreasing values of w out and b out . The dashed line shows the line scan at the output of an untapered 1 cm wide PPWG with an equivalent measurement, with the x axis scaled down by 25. Here, the plate separation is tapered similar to M4.

Fig. 12
Fig. 12

(a) Waveforms measured at the output facet of the tapered PPWG M4 and an untapered 1 cm wide waveguide. These are measured using identical methods so that the waveforms can be compared. (b) The amplitude spectra show no bandwidth restrictions even though w out is much smaller than the free-space wavelength in the tapered case.

Tables (1)

Tables Icon

Table 1 Geometric Parameters of the Tapered PPWGs

Metrics