Abstract

A symmetrical magneto-optical photonic crystal under two equal and opposite magnetic fields is designed to generate a one-way edge mode, which cannot be reflected by the strong defect, a perfect electrical conductor, indicating immunity to strong defect. Partial reversal of electromagnetic pulse is realized when directions of applied magnetic fields are reversed, suggesting that we can dynamically manipulate the electromagnetic edge mode in such a one-way waveguide by tuning directions of the external magnetic fields, which may have potential applications in microwave engineering.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
    [CrossRef] [PubMed]
  2. M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
    [CrossRef] [PubMed]
  3. M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
    [CrossRef] [PubMed]
  4. M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
    [CrossRef]
  5. M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R)(2006).
    [CrossRef]
  6. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
    [CrossRef] [PubMed]
  7. S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007).
    [CrossRef] [PubMed]
  8. J. T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, “Stopping single photons in one-dimensional circuit quantum electrodynamics systems,” Phys. Rev. B 75, 035320 (2007).
    [CrossRef]
  9. A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28, 88–90 (1976).
    [CrossRef]
  10. G. S. Agarwal, A. T. Friberg, and E. Wolf, “Scattering theory of distortion correction by phase conjugation,” J. Opt. Soc. Am. 73, 529–538 (1983).
    [CrossRef]
  11. R. A. Fisher, Optical Phase Conjugation (Academic, 1984).
  12. B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  13. M. Fink, “Time reversal of ultrasonic fields—Part I: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
    [CrossRef] [PubMed]
  14. I. Freund, “Time-reversal symmetry and image reconstruction through multiple-scattering media,” J. Opt. Soc. Am. A 9, 456–463 (1992).
    [CrossRef]
  15. D. M. Marom, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Quantum Electron. 7, 683–693(2001).
    [CrossRef]
  16. J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
    [CrossRef] [PubMed]
  17. M. F. Yanik and S. Fan, “Dynamic photonic structures: stopping, storage, and time reversal of light,” Stud. Appl. Math. 115, 233–253 (2005).
    [CrossRef]
  18. S. Longhi, “Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations,” Phys. Rev. E 75, 026606 (2007).
    [CrossRef]
  19. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
    [CrossRef] [PubMed]
  20. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
    [CrossRef] [PubMed]
  21. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
    [CrossRef] [PubMed]
  22. S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
    [CrossRef]
  23. Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Phys. Rev. B 77, 235125 (2008).
    [CrossRef]
  24. H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
    [CrossRef]
  25. A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
    [CrossRef]
  26. C. Huang and C. Jiang, “Nonreciprocal photonic crystal delay waveguide,” J. Opt. Soc. Am. B 26, 1954–1958 (2009).
    [CrossRef]
  27. H. Zhu and C. Jiang, “Broadband unidirectional electromagnetic mode at interface of anti-parallel magnetized media,” Opt. Express 18, 6914–6921 (2010).
    [CrossRef] [PubMed]
  28. S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
    [CrossRef]
  29. J. F. Torrado, J. B. González-Díaz, M. U. González, A. García-Martín, and G. Armelles, “Magneto-optical effects in interacting localized and propagating surface plasmon modes,” Opt. Express 18, 15635–15642 (2010).
    [CrossRef] [PubMed]
  30. W.-M. Ye, X.-D. Yuan, C.-C. Guo, and C. Zen, “Unidirectional transmission in non-symmetric gratings made of isotropic material,” Opt. Express 18, 7590–7595 (2010).
    [CrossRef] [PubMed]
  31. W. Śmigaj, J. Romero-Vivas, B. Gralak, L. Magdenko, B. Dagens, and M. Vanwolleghem, “Magneto-optical circulator designed for operation in a uniform external magnetic field,” Opt. Lett. 35, 568–570 (2010).
    [CrossRef] [PubMed]
  32. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
    [CrossRef] [PubMed]
  33. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94 (2009).
    [CrossRef]

2010 (4)

2009 (4)

C. Huang and C. Jiang, “Nonreciprocal photonic crystal delay waveguide,” J. Opt. Soc. Am. B 26, 1954–1958 (2009).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef] [PubMed]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94 (2009).
[CrossRef]

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
[CrossRef]

2008 (7)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Phys. Rev. B 77, 235125 (2008).
[CrossRef]

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

2007 (3)

S. Longhi, “Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations,” Phys. Rev. E 75, 026606 (2007).
[CrossRef]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007).
[CrossRef] [PubMed]

J. T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, “Stopping single photons in one-dimensional circuit quantum electrodynamics systems,” Phys. Rev. B 75, 035320 (2007).
[CrossRef]

2006 (2)

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R)(2006).
[CrossRef]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
[CrossRef] [PubMed]

2005 (2)

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Dynamic photonic structures: stopping, storage, and time reversal of light,” Stud. Appl. Math. 115, 233–253 (2005).
[CrossRef]

2004 (3)

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

2002 (1)

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[CrossRef] [PubMed]

2001 (1)

D. M. Marom, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Quantum Electron. 7, 683–693(2001).
[CrossRef]

1992 (2)

M. Fink, “Time reversal of ultrasonic fields—Part I: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[CrossRef] [PubMed]

I. Freund, “Time-reversal symmetry and image reconstruction through multiple-scattering media,” J. Opt. Soc. Am. A 9, 456–463 (1992).
[CrossRef]

1985 (1)

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

1984 (1)

R. A. Fisher, Optical Phase Conjugation (Academic, 1984).

1983 (1)

1976 (1)

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28, 88–90 (1976).
[CrossRef]

Agarwal, G. S.

Armelles, G.

Baryshev, A. V.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
[CrossRef]

Chong, Y. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef] [PubMed]

Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Phys. Rev. B 77, 235125 (2008).
[CrossRef]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Chui, S. T.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Dagens, B.

de Rosny, J.

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[CrossRef] [PubMed]

Du, J.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Fan, S.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94 (2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007).
[CrossRef] [PubMed]

J. T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, “Stopping single photons in one-dimensional circuit quantum electrodynamics systems,” Phys. Rev. B 75, 035320 (2007).
[CrossRef]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Dynamic photonic structures: stopping, storage, and time reversal of light,” Stud. Appl. Math. 115, 233–253 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

Fink, M.

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[CrossRef] [PubMed]

M. Fink, “Time reversal of ultrasonic fields—Part I: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[CrossRef] [PubMed]

Fisher, R. A.

R. A. Fisher, Optical Phase Conjugation (Academic, 1984).

Freund, I.

Friberg, A. T.

García-Martín, A.

González, M. U.

González-Díaz, J. B.

Gralak, B.

Guo, C.-C.

Haldane, F. D.

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

Huang, C.

Inoue, M.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
[CrossRef]

Jiang, C.

Joannopoulos, J. D.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

John, S.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Khanikaev, A. B.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
[CrossRef]

Kivshar, Y. S.

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
[CrossRef]

Lin, Z.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Liu, S.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Longhi, S.

S. Longhi, “Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations,” Phys. Rev. E 75, 026606 (2007).
[CrossRef]

Magdenko, L.

Marom, D. M.

D. M. Marom, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Quantum Electron. 7, 683–693(2001).
[CrossRef]

Mitsugi, S.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R)(2006).
[CrossRef]

Notomi, M.

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R)(2006).
[CrossRef]

Pilipetsky, N. F.

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Povinelli, M. L.

Raghu, S.

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

Romero-Vivas, J.

Sandhu, S.

Shen, J. T.

J. T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, “Stopping single photons in one-dimensional circuit quantum electrodynamics systems,” Phys. Rev. B 75, 035320 (2007).
[CrossRef]

Shkunov, V. V.

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Smigaj, W.

Soljacic, M.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Phys. Rev. B 77, 235125 (2008).
[CrossRef]

Suh, W.

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Takeda, H.

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

Torrado, J. F.

Vanwolleghem, M.

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Wang, Z.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Wen, X. G.

Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Phys. Rev. B 77, 235125 (2008).
[CrossRef]

Wolf, E.

Wu, R. X.

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

Yanik, M. F.

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Stopping and time reversing a light pulse using dynamic loss tuning of coupled-resonator delay lines,” Opt. Lett. 32, 3333–3335 (2007).
[CrossRef] [PubMed]

S. Sandhu, M. L. Povinelli, M. F. Yanik, and S. Fan, “Dynamically tuned coupled-resonator delay lines can be nearly dispersion free,” Opt. Lett. 31, 1985–1987 (2006).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Dynamic photonic structures: stopping, storage, and time reversal of light,” Stud. Appl. Math. 115, 233–253 (2005).
[CrossRef]

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Yariv, A.

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28, 88–90 (1976).
[CrossRef]

Ye, W.-M.

Yu, Z.

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94 (2009).
[CrossRef]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

Yuan, X.-D.

Zeldovich, B. Ya.

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Zen, C.

Zhu, H.

Appl. Phys. Lett. (2)

A. B. Khanikaev, A. V. Baryshev, M. Inoue, and Y. S. Kivshar, “One-way electromagnetic Tamm states in magnetophotonic structures,” Appl. Phys. Lett. 95, 011101 (2009).
[CrossRef]

A. Yariv, “Three-dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28, 88–90 (1976).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. M. Marom, “Real-time spatial-temporal signal processing with optical nonlinearities,” IEEE J. Quantum Electron. 7, 683–693(2001).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Fink, “Time reversal of ultrasonic fields—Part I: basic principles,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 555–566 (1992).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Photon. (1)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photon. 3, 91–94 (2009).
[CrossRef]

Nature (1)

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772–775 (2009).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (4)

H. Takeda and S. John, “Compact optical one-way waveguide isolators for photonic-band-gap microchips,” Phys. Rev. A 78, 023804 (2008).
[CrossRef]

S. Raghu and F. D. Haldane, “Analogs of quantum-Hall-effect edge states in photonic crystals,” Phys. Rev. A 78, 033834(2008).
[CrossRef]

M. F. Yanik and S. Fan, “Stopping and storing light coherently,” Phys. Rev. A 71, 013803 (2005).
[CrossRef]

M. Notomi and S. Mitsugi, “Wavelength conversion via dynamic refractive index tuning of a cavity,” Phys. Rev. A 73, 051803(R)(2006).
[CrossRef]

Phys. Rev. B (3)

Y. D. Chong, X. G. Wen, and M. Soljacic, “Effective theory of quadratic degeneracies,” Phys. Rev. B 77, 235125 (2008).
[CrossRef]

S. Liu, J. Du, Z. Lin, R. X. Wu, and S. T. Chui, “Formation of robust and completely tunable resonant photonic band gaps,” Phys. Rev. B 78, 155101 (2008).
[CrossRef]

J. T. Shen, M. L. Povinelli, S. Sandhu, and S. Fan, “Stopping single photons in one-dimensional circuit quantum electrodynamics systems,” Phys. Rev. B 75, 035320 (2007).
[CrossRef]

Phys. Rev. E (1)

S. Longhi, “Stopping and time reversal of light in dynamic photonic structures via Bloch oscillations,” Phys. Rev. E 75, 026606 (2007).
[CrossRef]

Phys. Rev. Lett. (7)

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[CrossRef] [PubMed]

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[CrossRef] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100, 023902 (2008).
[CrossRef] [PubMed]

J. de Rosny and M. Fink, “Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink,” Phys. Rev. Lett. 89, 124301 (2002).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, “Time reversal of light with linear optics and modulators,” Phys. Rev. Lett. 93, 173903 (2004).
[CrossRef] [PubMed]

M. F. Yanik, W. Suh, Z. Wang, and S. Fan, “Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency,” Phys. Rev. Lett. 93, 233903 (2004).
[CrossRef] [PubMed]

Stud. Appl. Math. (1)

M. F. Yanik and S. Fan, “Dynamic photonic structures: stopping, storage, and time reversal of light,” Stud. Appl. Math. 115, 233–253 (2005).
[CrossRef]

Other (2)

R. A. Fisher, Optical Phase Conjugation (Academic, 1984).

B. Ya. Zeldovich, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

MO one-way waveguide. (a) One-way waveguide formed at the interface between two identical photonic crystals under two equal and opposite external magnetic fields. (b) Projected band structure of (a), where the red central curve represents the guide mode. The inset of (b) is the supercell of our one-way waveguide. (c) Steady-state field distribution of E z in the one-way waveguide at the frequency of 0.546 ( 2 π c / a ) . Lattice constant is a.

Fig. 2
Fig. 2

(a) Steady-state field distribution of E z in the one-way waveguide embedded with a slab of PEC. (b) Field amplitude recorded at the input (left red curve) and three-lattice-constant length behind the defect (right blue curve).

Fig. 3
Fig. 3

(a) Schematic of a tunable MO photonic crystal system. In regions A and C, there are four rows of MO photonic crystals among the PEC, while there are only two rows of MO photonic crystal among the PEC in region B. To start, one external magnetic field is applied in the lower half plane along the direction of + z , while the other magnetic field is applied in the upper half plane along the direction of z (b) Steady-state field distribution of the gray region of (a) to demonstrate the impedance match between regions A and B. Steady-state field distribution of E z at t = 484 ( a / c ) , for the (c) nondissipation and (d) dissipation cases. (e) Time simulations of the Gaussian pulse for the case of nondissipation (top figure) and dissipation (bottom figure) cases. (1), (2), and (3) represent the initial, transmitted, and reflected pulses, respectively. (f) Corresponding values of (1), (2), and (3). (g) Equivalent structure of region C.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ ( r ) = μ 0 [ μ ± i k 0 i k μ 0 0 0 1 ] ,
× [ μ ( r ) 1 × E ] = ε ( r ) ω 2 E ,
μ ( r ) 1 = ( μ 0 μ ˜ 1 ± i μ 0 η 0 i μ 0 η μ 0 μ ˜ 1 0 0 0 μ 0 1 ) .

Metrics