Abstract

Localized surface plasmon resonances occurring within subwavelength apertures are accompanied by an aperture-geometry-dependent phase shift that can be utilized for beam manipulation. Here we demonstrate two- dimensional, planar, converging and diverging plasmonic lenses, formed by an array of nanometric spatially varying cross-shaped apertures in a silver film. The performance of lenses with different design configurations was evaluated at two different wavelengths using a confocal scanning optical microscope.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol.  111 of Springer Tracts in Modern Physics (Springer, 1988).
  2. H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
    [CrossRef] [PubMed]
  3. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
    [CrossRef] [PubMed]
  4. F. M. Huang and N. I. Zheludev, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
    [CrossRef]
  5. F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
    [CrossRef] [PubMed]
  6. Y. Liu, H. Shi, C. Wang, C. Du, and X. Luo, “Multiple directional beaming effect of metallic subwavelength slit surrounded by periodically corrugated grooves,” Opt. Express 16, 4487–4493 (2008).
    [CrossRef] [PubMed]
  7. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
    [CrossRef]
  8. J. M. Steele, Z. Liu, Y. Wang, and X. Zhang, “Resonant and non-resonant generation and focusing of surface plasmons with circular gratings,” Opt. Express 14, 5664–5670 (2006).
    [CrossRef] [PubMed]
  9. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004).
    [CrossRef]
  10. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
    [CrossRef] [PubMed]
  11. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
    [CrossRef]
  12. Y. Zhao, S.-C. S. Lin, A. A. Nawaz, B. Kiraly, Q. Hao, Y. Liu, and T. J. Huang, “Beam bending via plasmonic lenses,” Opt. Express 18, 23458–23465 (2010).
    [CrossRef] [PubMed]
  13. Q. Chen and D. R. S. Cumming, “Visible light focusing demonstrated by plasmonic lenses based on nano-slits in an aluminum film,” Opt. Express 18, 14788–14793 (2010).
    [CrossRef] [PubMed]
  14. Y. Chen, C. Zhou, X. Luo, and C. Du, “Structured lens formed by a 2D square hole array in a metallic film,” Opt. Lett. 33, 753–755 (2008).
    [CrossRef] [PubMed]
  15. C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
    [CrossRef]
  16. S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33, 821–823 (2008).
    [CrossRef] [PubMed]
  17. X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18, 11683–11688 (2010).
    [CrossRef] [PubMed]
  18. L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
    [CrossRef] [PubMed]
  19. L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009).
    [CrossRef]
  20. COMSOL Multi-physics, http://www.comsol.com/.
  21. E. Hecht, Optics (Addison Wesley, 2002).

2010 (5)

2009 (2)

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[CrossRef]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

2008 (4)

2007 (3)

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

F. M. Huang and N. I. Zheludev, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

2006 (1)

2005 (1)

2004 (1)

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004).
[CrossRef]

2003 (1)

F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Chang, Y. T.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Chen, C. Y.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Chen, Q.

Chen, Y.

Y. Chen, C. Zhou, X. Luo, and C. Du, “Structured lens formed by a 2D square hole array in a metallic film,” Opt. Lett. 33, 753–755 (2008).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
[CrossRef] [PubMed]

Chuang, T. H.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Cumming, D. R. S.

Davis, T. J.

Dong, X.

Du, C.

Du, C. L.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Enoch, S.

F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Fedotov, V. A.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
[CrossRef] [PubMed]

Freeman, D.

Fu, Y.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Gao, H.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Goh, X. M.

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18, 11683–11688 (2010).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef] [PubMed]

Haftel, M. I.

Hande, L. B.

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[CrossRef]

Hao, Q.

Hecht, E.

E. Hecht, Optics (Addison Wesley, 2002).

Huang, F. M.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang and N. I. Zheludev, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Huang, T. J.

Hyun, J. K.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

Jamieson, D. N.

Kao, T. S.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
[CrossRef] [PubMed]

Kim, H. K.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004).
[CrossRef]

Kiraly, B.

Lauhon, L. J.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

Lee, M. H.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

Lee, S. C.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Lim, L. E. N.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Lin, L.

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18, 11683–11688 (2010).
[CrossRef] [PubMed]

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef] [PubMed]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[CrossRef]

Lin, S.-C. S.

Liu, Y.

Liu, Z.

Luo, X.

Luo, X. G.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Luther-Davies, B.

Lyandres, O.

F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Martín-Moreno, L.

F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

McGuinness, L. P.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef] [PubMed]

Milicevic, M.

Nawaz, A. A.

Odom, T. W.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

Orbons, S. M.

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol.  111 of Springer Tracts in Modern Physics (Springer, 1988).

Roberts, A.

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef] [PubMed]

X. M. Goh, L. Lin, and A. Roberts, “Planar focusing elements using spatially varying near-resonant aperture arrays,” Opt. Express 18, 11683–11688 (2010).
[CrossRef] [PubMed]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[CrossRef]

S. M. Orbons, M. I. Haftel, C. Schlockermann, D. Freeman, M. Milicevic, T. J. Davis, B. Luther-Davies, D. N. Jamieson, and A. Roberts, “Dual resonance mechanisms facilitating enhanced optical transmission in coaxial waveguide arrays,” Opt. Lett. 33, 821–823 (2008).
[CrossRef] [PubMed]

Schlockermann, C.

Shi, H.

Steele, J. M.

Sun, Z.

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004).
[CrossRef]

Tsai, M. W.

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Wang, C.

Wang, Y.

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Yang, J.-C.

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

Zhang, X.

Zhao, Y.

Zheludev, N. I.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang and N. I. Zheludev, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Zhou, C.

Zhou, W.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

F. M. Huang and N. I. Zheludev, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90, 091119 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, “Plasmonic microzone plate: superfocusing at visible regime,” Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004).
[CrossRef]

C. Y. Chen, M. W. Tsai, T. H. Chuang, Y. T. Chang, and S. C. Lee, “Extraordinary transmission through a silver film perforated with cross shaped hole arrays in a square lattice,” Appl. Phys. Lett. 91, 063108 (2007).
[CrossRef]

L. Lin, L. B. Hande, and A. Roberts, “Resonant nanometric cross-shaped apertures: single apertures versus periodic arrays,” Appl. Phys. Lett. 95, 201116 (2009).
[CrossRef]

Nano Lett. (4)

L. Lin, X. M. Goh, L. P. McGuinness, and A. Roberts, “Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for Fresnel-region focusing,” Nano Lett. 10, 1936–1940 (2010).
[CrossRef] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009).
[CrossRef]

H. Gao, J. K. Hyun, M. H. Lee, J.-C. Yang, L. J. Lauhon, and T. W. Odom, “Broadband plasmonic microlenses based on patches of nanoholes,” Nano Lett. 10, 4111–4116 (2010).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8, 2469–2472 (2008).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Rev. Lett. (1)

F. J. García-Vidal, O. Lyandres, S. Enoch, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003).
[CrossRef] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Vol.  111 of Springer Tracts in Modern Physics (Springer, 1988).

COMSOL Multi-physics, http://www.comsol.com/.

E. Hecht, Optics (Addison Wesley, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Calculated normalized transmission (blue curve) and phase (red curve) of the transmitted field for a periodic array of cross-shaped apertures on a glass substrate as a function of cross-shaped aperture arm length at λ = 850 nm .

Fig. 2
Fig. 2

Calculated (a) phase (b) amplitude, and (c) arm length along one of the symmetric axes (x axis) of 2D plasmonic converging lenses A (red curve) and B (blue curve) operating at λ = 850 nm . Respective calculations for diverging lenses C (green curve) and D (black curve) are depicted in (d)–(f).

Fig. 3
Fig. 3

Scanning electron microscope images of the fabricated lenses A and C.

Fig. 4
Fig. 4

Simulated light propagation for plasmonic lenses (a) A, (b) B, (c) C, (d) D, and (e) reference structure E, consisting of fixed arm-length apertures ( 250 nm ) at λ = 850 nm . Modeled device x and z dimensions are 6.4 μm × 30.0 μm .

Fig. 5
Fig. 5

Measured meridional intensity profiles (along the x z plane) of light passing through plasmonic lenses (a) A, (b) B, (c) C, (d) D, and (e) reference structure E, consisting of fixed arm-length apertures ( 250 nm ) at λ = 850 nm .

Fig. 6
Fig. 6

Calculated (a) phase and (b) amplitude along one of the symmetric axes (x axis) of 2D plasmonic converging lenses A (red curve) and B (blue curve) operating at λ = 750 nm . Respective calculations for diverging lenses C (green curve) and D (black curve) are depicted in (c) and (d).

Fig. 7
Fig. 7

Simulated light propagation for plasmonic lenses (a) A, (b) B, (c) C, (d) D, and (e) reference structure E, consisting of fixed arm-length apertures ( 250 nm ) at λ = 750 nm . Modeled device x and z dimensions are 6.4 μm × 30.0 μm .

Fig. 8
Fig. 8

Measured meridional intensity profiles (along the x z plane) of light passing through plasmonic lenses (a) A, (b) B, (c) C, (d) D, and (e) reference structure E, consisting of fixed arm-length apertures ( 250 nm ) at λ = 750 nm .

Fig. 9
Fig. 9

Measured intensity distribution plots along the z axis for lens A (blue solid curve) and reference structure E (red dotted curve) at (a)  λ = 850 nm , (b)  λ = 750 nm , and line plot across the cross section of the 2D intensity profile (across the x y plane) for lens A at the transmitted intensity maxima at (c)  λ = 850 nm ( z = 5.4 μm ) and (d)  λ = 750 nm ( z = 17.4 μm ).

Tables (1)

Tables Icon

Table 1 Design Geometric Focal Lengths of the Investigated Wavefront Control Devices at λ = 850 nm

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ϕ x y = 2 π λ ( f x 2 + y 2 + f 2 ) + 2 n π + ϕ 00 ,

Metrics