Abstract

Nanophotonic wire silicon waveguides are indispensable components of integrated photonic circuits. Because of the inherent nature of these waveguides, such as narrow width and high-index contrast, corners with large bending radii are inevitable for efficient light transmission with small loss values, which, in turn, impedes the miniaturization of photonic components. To alleviate huge bending losses of a right angle waveguide, we designed a structure incorporating a two-dimensional (2D) photonic crystal, along with careful engineering of the individual cell at the corner. The low transmission efficiency of around 55% can be increased to 99% by implementing 2D analysis. The implementation of the computationally heavy three-dimensional finite-difference time domain method, on the other hand, produces power transmission efficiencies of approximately 52% and 92% for a regular wire bend and optimized structure, respectively. The method asserts compact size and guarantees broadband operation, which, in turn, may assist the implementation of optical interconnects to distribute effectively optical clock signals through the chip.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, 1st ed. (Springer, 2006).
  2. G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st ed. (Wiley, 2004).
    [Crossref]
  3. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
    [Crossref]
  4. C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
    [Crossref]
  5. K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
    [Crossref]
  6. T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
    [Crossref]
  7. D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
    [Crossref]
  8. Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
    [Crossref] [PubMed]
  9. F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891–896 (2006).
    [Crossref]
  10. D. Sun, X. Li, D. Wong, Y. Hu, F. Luo, and T. J. Hall, “Modeling and numerical analysis for silicon-on-insulator rib waveguide corners,” J. Lightwave Technol. 27, 4610–4618 (2009).
    [Crossref]
  11. K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
    [Crossref]
  12. S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165(2001).
    [Crossref]
  13. H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
    [Crossref]
  14. S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
    [Crossref]
  15. W. T. Lau and S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into PhC slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
    [Crossref]
  16. Y. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
    [Crossref]
  17. A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
    [Crossref]
  18. J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
    [Crossref]
  19. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
    [Crossref]
  20. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005).
    [Crossref]
  21. M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol. 20, 1762–1772 (2002).
    [Crossref]
  22. C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
    [Crossref]
  23. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  24. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
    [Crossref] [PubMed]
  25. D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46, 1126–1131 (2007).
    [Crossref] [PubMed]
  26. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23, 2455–2461 (2005).
    [Crossref]
  27. E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
    [Crossref] [PubMed]
  28. C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
    [Crossref]
  29. T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
    [Crossref]
  30. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
    [Crossref]
  31. S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
    [Crossref]
  32. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001).
    [Crossref] [PubMed]
  33. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).
  34. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
    [Crossref]
  35. C. Pollock and M. Lipson, Integrated Photonics, 1st ed.(Springer, 2003).
  36. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  37. H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
    [Crossref] [PubMed]
  38. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
    [Crossref] [PubMed]
  39. H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19, 1532–1534 (2007).
    [Crossref]
  40. H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
    [Crossref]
  41. P. Bienstman, S. Assefa, S. G. Johnson, J. D. Joannopoulos, G. S. Petrich, and L. A. Kolodziejski, “Taper structures for coupling into photonic crystal slab waveguides,” J. Opt. Soc. Am. B 20, 1817–1821 (2003).
    [Crossref]

2010 (1)

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

2009 (4)

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

D. Sun, X. Li, D. Wong, Y. Hu, F. Luo, and T. J. Hall, “Modeling and numerical analysis for silicon-on-insulator rib waveguide corners,” J. Lightwave Technol. 27, 4610–4618 (2009).
[Crossref]

2008 (2)

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

2007 (4)

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19, 1532–1534 (2007).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[Crossref]

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

D. Dai, Y. Shi, and S. He, “Comparative study of the integration density for passive linear planar light-wave circuits based on three different kinds of nanophotonic waveguide,” Appl. Opt. 46, 1126–1131 (2007).
[Crossref] [PubMed]

2006 (10)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891–896 (2006).
[Crossref]

E. Dulkeith, F. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14, 3853–3863 (2006).
[Crossref] [PubMed]

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, 1st ed. (Springer, 2006).

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
[Crossref]

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

2005 (4)

2004 (5)

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st ed. (Wiley, 2004).
[Crossref]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[Crossref] [PubMed]

Y. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

2003 (2)

2002 (2)

M. Popovic, K. Wada, S. Akiyama, H. A. Haus, and J. Michel, “Air trenches for sharp silica waveguide bends,” J. Lightwave Technol. 20, 1762–1772 (2002).
[Crossref]

W. T. Lau and S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into PhC slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[Crossref]

2001 (2)

2000 (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).

1999 (1)

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

1995 (1)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Aalto, T.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Adibi, A.

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Akiyama, S.

Arai, S.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Arakawa, Y.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
[Crossref]

Assefa, S.

Baets, R.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

Benisty, H.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

Bienstman, P.

Bogaerts, W.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

Caglayan, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

Cakmak, O.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

Cassan, E.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891–896 (2006).
[Crossref]

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Checoury, X.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

Chelnokov, A.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

Chow, E.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Chu, T.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
[Crossref]

Citrin, D. S.

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19, 1532–1534 (2007).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[Crossref]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
[Crossref] [PubMed]

Colak, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

Combrie, S.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

Dai, D.

Dulkeith, E.

Dumon, P.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

El Melhaoui, L.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Enomoto, H.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Etrich, C.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Fan, S.

W. T. Lau and S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into PhC slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[Crossref]

S. Fan, S. G. Johnson, and J. D. Joannopoulos, “Waveguide branches in photonic crystals,” J. Opt. Soc. Am. B 18, 162–165(2001).
[Crossref]

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

Fang, Q.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Fathpour, S.

Fédéli, J. M.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Forchel, A.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Freude, W.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Fujii, M.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Fukuda, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Girolami, G.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Green, W. M.

Grillot, F.

Grot, A.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Guillot, G.

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, 1st ed. (Springer, 2006).

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).

Hall, T. J.

Harjanne, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Haus, H. A.

He, S.

Heimala, P.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Höfling, S.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Hu, Y.

Huang, J.

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

Huang, J. D.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Iliew, R.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Inoue, K.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Ishida, S.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
[Crossref]

Ishizaka, M.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

Itabashi, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Jaenen, P.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

Jafarpour, A.

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Jalali, B.

Jensen, J. S.

Joannopoulos, J.

Joannopoulos, J. D.

Johnson, S.

Johnson, S. G.

Kapulainen, M.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Kimerling, L. C.

Knights, A. P.

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st ed. (Wiley, 2004).
[Crossref]

Kolodziejski, L. A.

Koos, C.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

Kurt, H.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19, 1532–1534 (2007).
[Crossref]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[Crossref]

H. Kurt and D. S. Citrin, “Annular photonic crystals,” Opt. Express 13, 10316–10326 (2005).
[Crossref] [PubMed]

Kwong, D. L.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Lau, W. T.

W. T. Lau and S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into PhC slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[Crossref]

Laval, S.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891–896 (2006).
[Crossref]

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Lederer, F.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Lee, R. K.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Leuthold, J.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Li, X.

Lipson, M.

C. Pollock and M. Lipson, Integrated Photonics, 1st ed.(Springer, 2003).

Lo, G. Q.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Lourtioz, J.-M.

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

Luo, F.

Lupu, A.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Manolatou, C.

Marris, D.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Maruyama, T.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

McNab, S. J.

Y. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

Michel, J.

Mirkarimi, L. W.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Moll, N.

Y. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

Momeni, B.

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

Morita, H.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Nakamura, S.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

Nishiyama, N.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Ozbay, E.

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

Pascal, D.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Pavesi, L.

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, 1st ed. (Springer, 2006).

Pertsch, T.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Petrich, G. S.

Pfrang, A.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Plumwongrot, D.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Pollock, C.

C. Pollock and M. Lipson, Integrated Photonics, 1st ed.(Springer, 2003).

Popovic, M.

Poulton, C. G.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[Crossref] [PubMed]

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st ed. (Wiley, 2004).
[Crossref]

Reinke, C. M.

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Reithmaier, J. P.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Rouvière, M.

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Sakamoto, S.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Schares, L.

Schimmel, T.

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

Schuller, C.

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

Selvaraja, S. K.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

Shi, Y.

Shoji, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Sigmund, O.

Solehmainen, K.

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

Soltani, M.

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

Song, J. F.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Sparacin, D. K.

Spector, S. J.

Sun, D.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).

Takahashi, J.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Takahashi, M.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Tamechika, E.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Tamura, S.

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Tao, S. H.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Thourhout, D. V.

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Fabrication of photonic wire and crystal circuits in silicon-on-insulator using 193nm optical lithography,” J. Lightwave Technol. 27, 4076–4083 (2009).
[Crossref]

Tokushima, M.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

Tsuchizawa, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Uchiyama, S.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Urino, Y.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

Villeneuve, P. R.

C. Manolatou, S. G. Johnson, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “High-density integrated optics,” J. Lightwave Technol. 17, 1682–1692 (1999).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

Vivien, L.

F. Grillot, L. Vivien, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24, 891–896 (2006).
[Crossref]

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

Vlasov, Y.

Y. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

Y. Vlasov and S. J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12, 1622–1631 (2004).
[Crossref] [PubMed]

Vlasov, Y. A.

Wada, K.

Watanabe, T.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Wong, D.

Xia, F.

Xu, Y.

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Yamada, H.

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
[Crossref]

Yamada, K.

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

Yang, R.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Yu, M. B.

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

A. Jafarpour, E. Chow, C. M. Reinke, J. D. Huang, A. Adibi, A. Grot, L. W. Mirkarimi, G. Girolami, R. K. Lee, and Y. Xu, “Large-bandwidth ultra-low-loss guiding in bi-periodic photonic crystal waveguides,” Appl. Phys. B 79, 409–414 (2004).
[Crossref]

Appl. Phys. Lett. (6)

J. Huang, C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, and A. Adibi, “Observation of large parity-change-induced dispersion in triangular-lattice photonic crystal waveguides using phase sensitive techniques,” Appl. Phys. Lett. 88, 071111 (2006).
[Crossref]

S. H. Tao, M. B. Yu, J. F. Song, Q. Fang, R. Yang, G. Q. Lo, and D. L. Kwong, “Design and fabrication of a line-defect bend sandwiched with air trenches in a photonic crystal platform,” Appl. Phys. Lett. 92, 031113 (2008).
[Crossref]

W. T. Lau and S. Fan, “Creating large bandwidth line defects by embedding dielectric waveguides into PhC slabs,” Appl. Phys. Lett. 81, 3915–3917 (2002).
[Crossref]

C. Schuller, S. Höfling, A. Forchel, C. Etrich, T. Pertsch, R. Iliew, F. Lederer, and J. P. Reithmaier, “Highly efficient and compact photonic wire splitters on GaAs,” Appl. Phys. Lett. 91, 221102(2007).
[Crossref]

D. Marris, L. Vivien, D. Pascal, M. Rouvière, E. Cassan, A. Lupu, S. Laval, J. M. Fédéli, and L. El Melhaoui, “Ultralow loss successive divisions using silicon-on-insulator microwaveguides,” Appl. Phys. Lett. 87, 211102 (2005).
[Crossref]

H. Kurt, E. Colak, O. Cakmak, H. Caglayan, and E. Ozbay, “The focusing effect of graded index photonic crystals,” Appl. Phys. Lett. 93, 171108 (2008).
[Crossref]

Electron. Commun. Jpn., Part 2, Electron. (1)

K. Yamada, T. Tsuchizawa, T. Watanabe, J. Takahashi, H. Fukuda, M. Takahashi, T. Shoji, S. Uchiyama, E. Tamechika, S. Itabashi, and H. Morita, “Silicon wire waveguiding system: fundamental characteristics and applications,” Electron. Commun. Jpn., Part 2, Electron. 89, 42–55 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron. 43, 78–84 (2007).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

C. G. Poulton, C. Koos, M. Fujii, A. Pfrang, T. Schimmel, J. Leuthold, and W. Freude, “Radiation modes and roughness loss in high index-contrast waveguides,” IEEE J. Sel. Top. Quantum Electron. 12, 1306–1321 (2006).
[Crossref]

S. K. Selvaraja, P. Jaenen, W. Bogaerts, D. V. Thourhout, P. Dumon, and R. Baets, “Sub-nanometer linewidth uniformity in silicon nano-photonic waveguide devices using CMOS fabrication technology,” IEEE J. Sel. Top. Quantum Electron. 16, 316–324 (2010).
[Crossref]

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12, 1371–1379 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Kurt and D. S. Citrin, “A novel optical coupler design with graded-index photonic crystals,” IEEE Photon. Technol. Lett. 19, 1532–1534 (2007).
[Crossref]

T. Aalto, K. Solehmainen, M. Harjanne, M. Kapulainen, and P. Heimala, “Low-loss converters between optical silicon waveguides of different sizes and types,” IEEE Photon. Technol. Lett. 18, 709–711 (2006).
[Crossref]

IEICE Trans. Electron. (1)

T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, and Y. Arakawa, “Ultra-small silicon photonic wire waveguide devices,” IEICE Trans. Electron. E92-C, 217–223 (2009).
[Crossref]

J. Appl. Phys. (1)

Y. Vlasov, N. Moll, and S. J. McNab, “Mode mixing in asymmetric double-trench photonic crystal waveguides,” J. Appl. Phys. 95, 4538–4544 (2004).
[Crossref]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994).
[Crossref]

J. Lightwave Technol. (7)

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

K. Inoue, D. Plumwongrot, N. Nishiyama, S. Sakamoto, H. Enomoto, S. Tamura, T. Maruyama, and S. Arai, “Loss reduction of Si wire waveguide fabricated by edge-enhancement writing for electron beam lithography and reactive ion etching using double layered resist mask with C60,” Jpn. J. Appl. Phys. 48, 030208 (2009).
[Crossref]

Nature (1)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427, 595–596 (2004).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[Crossref] [PubMed]

Proc. IEEE (1)

H. Benisty, J.-M. Lourtioz, A. Chelnokov, S. Combrie, and X. Checoury, “Recent advances toward optical devices in semiconductor-based photonic crystals,” Proc. IEEE 94, 997–1023 (2006).
[Crossref]

Other (5)

L. Pavesi and G. Guillot, Optical Interconnects: The Silicon Approach, 1st ed. (Springer, 2006).

G. T. Reed and A. P. Knights, Silicon Photonics: An Introduction, 1st ed. (Wiley, 2004).
[Crossref]

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech, 2000).

C. Pollock and M. Lipson, Integrated Photonics, 1st ed.(Springer, 2003).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Regular photonic wire waveguide. The width of the dielectric slab is 0.20 a , where a is the lattice constant and the relative permittivity of the material is 12. (b) Dispersion diagram of the photonic wire waveguide. (c) Transmission efficiency of the right angle waveguide bend.

Fig. 2
Fig. 2

(a) Dispersion plot of the photonic wire surrounded by PC. The inset is the supercell used in the plane wave method. (b) Transmission coefficient of a right angle waveguide bend. The corner area is occupied by dielectric pillars.

Fig. 3
Fig. 3

(a) Modified corner region in which two cylinders are added and one is moved along the diagonal direction. (b) Transmission efficiencies for different rod locations. The inset is the magnified portion of the spectral plot.

Fig. 4
Fig. 4

Time snapshots of continuous pulse propagation for a regular photonic wire 90 ° bend. The same source propagation for the optimum structure designed in the present work is shown in (a) and (b).

Fig. 5
Fig. 5

Group velocity variations of the waveguide structure. The symmetry directions of PCs are taken to be along the two different symmetry directions, Γ X and Γ M .

Fig. 6
Fig. 6

Schematic drawing of a 3D photonic wire waveguide bend. The Si core is surrounded by a SiO 2 substrate layer ( n = 1.50 ) and air cladding ( n = 1.0 ). The top view of the 3D structure can be seen in Fig. 8 after periodic dielectric rods are placed around the corner area.

Fig. 7
Fig. 7

Transmission efficiencies of a standard 90 ° waveguide bend and optimized structure. The light propagation is modeled by employing the 3D FDTD method. The parameters of the structure are mentioned in Section 4.

Fig. 8
Fig. 8

Time snapshot of continuous pulse propagation for the optimum wire waveguide bend structure designed in the present work. The x y slice of the 3D e field is taken from the middle of the core region.

Metrics