Abstract

We present a novel two-dimensional (2D) liquid-core waveguiding scheme that combines two different types of antiresonance reflection optical waveguides (ARROWs) to achieve ease of fabrication and richer optofluidic functionalities. We established the conditions for the optimal integration of the two ARROW schemes theoretically and validated them with 2D numerical mode analysis. The proposed scheme also provides a convenient means to install supporting solid-core waveguides without additional burden in fabrication.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4, 3–16(2007).
    [CrossRef]
  2. A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4, 17–32 (2007).
    [CrossRef] [PubMed]
  3. T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
    [CrossRef]
  4. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29, 1894–1896 (2004).
    [CrossRef] [PubMed]
  5. D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31, 2136–2138 (2006).
    [CrossRef] [PubMed]
  6. I. V. Goltser, L. J. Mawst, and D. Botez, “Single-cladding antiresonant reflecting optical wavguide-type diode laser,” Opt. Lett. 20, 2219–2221 (1995).
    [CrossRef] [PubMed]
  7. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592–1594 (2002).
    [CrossRef]
  8. E. J. Lunt, P. Measor, B. S. Phillips, S. Kuhn, H. Schmidt, and A. R. Hawkins, “Improving solid to hollow core transmission for integrated ARROW waveguides,” Opt. Express 16, 20981–20986(2008).
    [CrossRef] [PubMed]
  9. H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006).
    [CrossRef]
  10. T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” J. Chromatogr. A 716, 135–139 (1995).
    [CrossRef]
  11. O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
    [CrossRef]
  12. G. R. Fowles, Introduction to Modern Optics (Dover, 1975).
  13. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
    [CrossRef] [PubMed]
  14. P. Dumais, C. L. Callender, C. J. Ledderhof, and J. P. Noad, “Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon,” Appl. Opt. 45, 9182–9190 (2006).
    [CrossRef] [PubMed]
  15. G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
    [CrossRef] [PubMed]
  16. Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
    [CrossRef]
  17. Comsol, Inc., “Comsol multiphysics,” http://www.comsol.com/products/multiphysics.
  18. G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by the effective index method,” Appl. Opt. 16, 113–118 (1977).
    [CrossRef] [PubMed]
  19. K. H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990).
    [CrossRef]

2008

2007

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4, 3–16(2007).
[CrossRef]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4, 17–32 (2007).
[CrossRef] [PubMed]

Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[CrossRef]

2006

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

P. Dumais, C. L. Callender, C. J. Ledderhof, and J. P. Noad, “Monolithic integration of microfluidic channels, liquid-core waveguides, and silica waveguides on silicon,” Appl. Opt. 45, 9182–9190 (2006).
[CrossRef] [PubMed]

D. Yin, D. W. Deamer, H. Schmidt, J. P. Barber, and A. R. Hawkins, “Single-molecule detection sensitivity using planar integrated optics on a chip,” Opt. Lett. 31, 2136–2138 (2006).
[CrossRef] [PubMed]

H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006).
[CrossRef]

2005

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef] [PubMed]

2004

2003

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef] [PubMed]

2002

1995

T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” J. Chromatogr. A 716, 135–139 (1995).
[CrossRef]

I. V. Goltser, L. J. Mawst, and D. Botez, “Single-cladding antiresonant reflecting optical wavguide-type diode laser,” Opt. Lett. 20, 2219–2221 (1995).
[CrossRef] [PubMed]

1990

K. H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990).
[CrossRef]

1987

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

1977

Abeeluck, A. K.

Barber, J. P.

Bassler, M.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

Bernini, R.

Botez, D.

Boyd, G. D.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Burns, W. K.

Callender, C. L.

Campopiano, S.

Corvini, P. J.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Deamer, D. W.

Delonge, T.

T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” J. Chromatogr. A 716, 135–139 (1995).
[CrossRef]

Döhler, G. H.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

Duguay, M. A.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Dumais, P.

Eggleton, B. J.

Fouckhardt, H.

T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” J. Chromatogr. A 716, 135–139 (1995).
[CrossRef]

Fowles, G. R.

G. R. Fowles, Introduction to Modern Optics (Dover, 1975).

Goltser, I. V.

Hawkins, A. R.

Headley, C.

Hocker, G. B.

Hoekstra, H. J. W. M.

H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006).
[CrossRef]

Johnson, N. M.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

Kiesel, P.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

Kim, J.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef] [PubMed]

Koch, T. L.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Koren, U.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

Kuhn, S.

Ledderhof, C. J.

Lee, L. P.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef] [PubMed]

Li, Z.

Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[CrossRef]

Litchinitser, N. M.

Liu, G. L.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef] [PubMed]

Lu, Y.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef] [PubMed]

Lunt, E. J.

Mawst, L. J.

Measor, P.

Noad, J. P.

Phillips, B. S.

Psaltis, D.

Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[CrossRef]

Sarro, P. M.

Schlereth, K. H.

K. H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990).
[CrossRef]

Schmidt, H.

Schmidt, O.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

Tacke, M.

K. H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990).
[CrossRef]

Uranus, H. P.

H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006).
[CrossRef]

van Groesen, E.

H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006).
[CrossRef]

Venugopalan, V.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef] [PubMed]

Yin, D.

Zeni, L.

Appl. Opt.

Appl. Phys. Lett.

O. Schmidt, M. Bassler, P. Kiesel, N. M. Johnson, and G. H. Döhler, “Guiding light in fluids,” Appl. Phys. Lett. 88, 151109(2006).
[CrossRef]

Chem. Rev.

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103, 577–644 (2003).
[CrossRef] [PubMed]

Electron. Lett.

T. L. Koch, U. Koren, G. D. Boyd, P. J. Corvini, and M. A. Duguay, “Antiresonant reflecting optical waveguides for III-V integrated optics,” Electron. Lett. 23, 244–245 (1987).
[CrossRef]

IEEE J. Quantum Electron.

K. H. Schlereth and M. Tacke, “The complex propagation constant of multilayer waveguides: an algorithm for a personal computer,” IEEE J. Quantum Electron. 26, 627–630 (1990).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Z. Li and D. Psaltis, “Optofluidic distributed feedback dye lasers,” IEEE J. Sel. Top. Quantum Electron. 13, 185–193 (2007).
[CrossRef]

J. Chromatogr. A

T. Delonge and H. Fouckhardt, “Integrated optical detection cell based on Bragg reflecting waveguides,” J. Chromatogr. A 716, 135–139 (1995).
[CrossRef]

Microfluid. Nanofluid.

H. Schmidt and A. R. Hawkins, “Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid. 4, 3–16(2007).
[CrossRef]

A. R. Hawkins and H. Schmidt, “Optofluidic waveguides: II. Fabrication and structures,” Microfluid. Nanofluid. 4, 17–32 (2007).
[CrossRef] [PubMed]

Nat. Mater.

G. L. Liu, J. Kim, Y. Lu, and L. P. Lee, “Optofluidic control using photothermal nanoparticles,” Nat. Mater. 5, 27–32 (2005).
[CrossRef] [PubMed]

Opt. Commun.

H. P. Uranus, H. J. W. M. Hoekstra, and E. van Groesen, “Consideration on material composition for low-loss hollow-core integrated optical waveguides,” Opt. Commun. 260, 577–582(2006).
[CrossRef]

Opt. Express

Opt. Lett.

Other

Comsol, Inc., “Comsol multiphysics,” http://www.comsol.com/products/multiphysics.

G. R. Fowles, Introduction to Modern Optics (Dover, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the proposed LCW, which integrates an SL-ARROW and a ML-ARROW. The SL-ARROWs also function as the microfluidic channel walls, the spacer (which separates the two ML-ARROWs), and a solid-core waveguide.

Fig. 2
Fig. 2

Ray model for the lateral confinement configuration based on the SL-ARROW/liquid core/SL-ARROW structure. n s > n c > n a is assumed.

Fig. 3
Fig. 3

(a) Dotted and solid curves show the calculated L prop , vert , the propagation distance owing only to the 1D ML-ARROW confinement, and L prop , 2 D , the combined result of ML/SL- ARROWs, respectively. Vertical bars mark the wavelengths at which the lateral confinement by the SL-ARROW fails. (b) Curve showing the relation between the liquid-core width w and the real part of n eff , lat , the effective index arising from the SL-ARROW-based lateral confinement. As the liquid core widens, n eff , lat increases monotonically, approaching the target value of n eff , vert . (c) Unlike the monotonic increase in Re { n eff , lat } , L prop , 2 D increases with substantial fluctuations as w widens. The arrows specify the values of w at which the condition of Eq. (8) is satisfied.

Fig. 4
Fig. 4

(a) Comparison of EIM/TMM and 2D vectorial FEM results. (b) Calculated profiles of the 2D LCW’s fundamental mode at the two different λ o marked in Fig. 3a.

Fig. 5
Fig. 5

(a)  L prop , 2 D curve as a function of λ o when d s was increased to 3.3 μm . The vertical bars mark the new λ o values at which the SL-ARROW-based lateral confinement fails. The L prop , 2 D curve for d s = 3.0 μm is also superimposed for comparison. It indicates that the increase in d s redshifts the L prop , 2 D dips, making the L prop , 2 D profile single peaked near λ o 750 nm . (b)  L prop , 2 D curve for an ML/SL-ARROW for which d s and w were maintained at 3.0 and 9.0 μm , but h was increased to 3.3 μm . The increase in the vertical confinement itself led to an augmented L prop , 2 D . (c) Another L prop , 2 D curve for an ML/SL-ARROW designed for the optofluidic excitation and detection of Alexa Fluor 546 dye.

Fig. 6
Fig. 6

(a) Calculated profile of the mode supported by the SL-ARROW ridge. (b) Decay of | E | into the liquid core.

Tables (1)

Tables Icon

Table 1 L prop,2D (in cm) Obtained from 2D Numerical Mode Analyses Using Different Combinations of the Structural Parameters d s , w, and h (All in μm) a

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ 1 = 2 k o n s d s cos θ 2 + ϕ TIR = 2 m π ,
Δ ϕ 1 = ( 2 m + 1 ) π .
ϕ a f = k o n c [ 4 · d s tan θ 2 + w . ( tan θ 1 cot θ 1 ) ] · sin θ 1 ,
ϕ a f = 4 k o n s d s sec θ 2 + k o n c w sec θ 1 + 2 · ϕ TIR .
Δ ϕ 2 = ϕ a f ϕ a f = 2 q π
4 k o n s d s sec θ 2 4 k o n c d s tan θ 2 sin θ 1 = 4 k o n s d s cos θ 2 ,
Δ ϕ 2 = 4 k o n s d s cos θ 2 + 2 ϕ TIR + k o n c w · ( sec θ 1 tan θ 1 + cot θ 1 ) = 2 q π .
sec θ 1 tan θ 1 + cot θ 1 = q · λ o / ( n c · w ) ,

Metrics