Abstract

The use of cold atoms in any sensor operating in a dynamic environment requires that the measurement cycle be conducted before the atom cloud escapes the interaction region. Under multiple-g accelerations it is desirable to complete measurements in millisecond time scales, particularly when laser beams are used to interrogate the atoms. In this paper, we demonstrate high-contrast atom interferometry in a vapor cell using stimulated Raman transitions at millisecond interrogation times. Laser-cooled cesium atoms are interrogated with a sequence of three Raman pulses and the interferometer phase is read out in the same region in which the atoms are trapped. Our system achieved over 70% contrast with a Doppler insensitive interferometer and over 30% contrast with a Doppler sensitive interferometer, in an environment normally considered adverse to high-contrast atom interferometry (e.g., no retroreflector stabilization and no magnetic shielding). Demonstration of an inertially sensitive atom interferometer in this environment supports the feasibility of a high-bandwidth inertial sensor using light pulse atom interferometry. Finally, we show that Raman pulse population transfer efficiency in our system is primarily limited by nonuniformity of the Raman laser intensity across the atom cloud.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature (London) 463, 926-929 (2010).
    [CrossRef]
  2. A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25-61 (2001).
    [CrossRef]
  3. Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
    [CrossRef]
  4. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
    [CrossRef]
  5. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
    [CrossRef]
  6. T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Classical Quantum Gravity 17, 2385-2398 (2000).
    [CrossRef]
  7. G. Biedermann, “Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers,” Ph.D. thesis, Stanford University (2007).
  8. K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis, Stanford University (2008).
  9. X. Wu, “Gravity gradient survey with a mobile atom interferometer,” Ph.D. thesis, Stanford University (2009).
  10. T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
    [CrossRef]
  11. E. L. Hahn, “Spin Echoes,” Phys. Rev. 80, 580-594 (1950).
    [CrossRef]
  12. M. F. Andersen, A. Kaplan, and N. Davidson, “Echo spectroscopy and quantum stability of trapped atoms,” Phys. Rev. Lett. 90, 023001 (2003).
    [CrossRef] [PubMed]

2010 (2)

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature (London) 463, 926-929 (2010).
[CrossRef]

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

2009 (1)

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

2003 (1)

M. F. Andersen, A. Kaplan, and N. Davidson, “Echo spectroscopy and quantum stability of trapped atoms,” Phys. Rev. Lett. 90, 023001 (2003).
[CrossRef] [PubMed]

2002 (1)

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

2001 (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25-61 (2001).
[CrossRef]

2000 (1)

T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Classical Quantum Gravity 17, 2385-2398 (2000).
[CrossRef]

1998 (1)

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

1950 (1)

E. L. Hahn, “Spin Echoes,” Phys. Rev. 80, 580-594 (1950).
[CrossRef]

Andersen, M. F.

M. F. Andersen, A. Kaplan, and N. Davidson, “Echo spectroscopy and quantum stability of trapped atoms,” Phys. Rev. Lett. 90, 023001 (2003).
[CrossRef] [PubMed]

Berg, P.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Biedermann, G.

G. Biedermann, “Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers,” Ph.D. thesis, Stanford University (2007).

Bodart, Q.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

Bouyer, P.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

Chu, S.

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature (London) 463, 926-929 (2010).
[CrossRef]

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25-61 (2001).
[CrossRef]

Chung, K. Y.

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25-61 (2001).
[CrossRef]

Davidson, N.

M. F. Andersen, A. Kaplan, and N. Davidson, “Echo spectroscopy and quantum stability of trapped atoms,” Phys. Rev. Lett. 90, 023001 (2003).
[CrossRef] [PubMed]

Ertmer, W.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Fixler, J. B.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

Foster, G. T.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

Gilowski, M.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Gustavson, T. L.

T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Classical Quantum Gravity 17, 2385-2398 (2000).
[CrossRef]

Hahn, E. L.

E. L. Hahn, “Spin Echoes,” Phys. Rev. 80, 580-594 (1950).
[CrossRef]

Haritos, K. G.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

Kaplan, A.

M. F. Andersen, A. Kaplan, and N. Davidson, “Echo spectroscopy and quantum stability of trapped atoms,” Phys. Rev. Lett. 90, 023001 (2003).
[CrossRef] [PubMed]

Kasevich, M. A.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Classical Quantum Gravity 17, 2385-2398 (2000).
[CrossRef]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

Landragin, A.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Classical Quantum Gravity 17, 2385-2398 (2000).
[CrossRef]

Malossi, N.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

McGuirk, J. M.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

Merlet, S.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

Müller, H.

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature (London) 463, 926-929 (2010).
[CrossRef]

Müller, T.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Pereira Dos Santos, F.

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

Peters, A.

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature (London) 463, 926-929 (2010).
[CrossRef]

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25-61 (2001).
[CrossRef]

Rasel, E. M.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Schubert, Ch.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Snadden, M. J.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

Takase, K.

K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis, Stanford University (2008).

Wendrich, T.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Wu, X.

X. Wu, “Gravity gradient survey with a mobile atom interferometer,” Ph.D. thesis, Stanford University (2009).

Zaiser, M.

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Bodart, S. Merlet, N. Malossi, F. Pereira Dos Santos, P. Bouyer, and A. Landragin, “A cold atom pyramidal gravimeter with a single laser beam,” Appl. Phys. Lett. 96, 134101(2010).
[CrossRef]

Classical Quantum Gravity (1)

T. L. Gustavson, A. Landragin, and M. A. Kasevich, “Rotation sensing with a dual atom interferometer Sagnac gyroscope,” Classical Quantum Gravity 17, 2385-2398 (2000).
[CrossRef]

Eur. Phys. J. D (1)

T. Müller, M. Gilowski, M. Zaiser, P. Berg, Ch. Schubert, T. Wendrich, W. Ertmer, and E. M. Rasel, “A compact dual atom interferometer gyroscope based on laser-cooled rubidium,” Eur. Phys. J. D 53, 273-281 (2009).
[CrossRef]

Metrologia (1)

A. Peters, K. Y. Chung, and S. Chu, “High-precision gravity measurements using atom interferometry,” Metrologia 38, 25-61 (2001).
[CrossRef]

Nature (London) (1)

H. Müller, A. Peters, and S. Chu, “A precision measurement of the gravitational redshift by the interference of matter waves,” Nature (London) 463, 926-929 (2010).
[CrossRef]

Phys. Rev. (1)

E. L. Hahn, “Spin Echoes,” Phys. Rev. 80, 580-594 (1950).
[CrossRef]

Phys. Rev. A (1)

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65, 033608 (2002).
[CrossRef]

Phys. Rev. Lett. (2)

M. F. Andersen, A. Kaplan, and N. Davidson, “Echo spectroscopy and quantum stability of trapped atoms,” Phys. Rev. Lett. 90, 023001 (2003).
[CrossRef] [PubMed]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the earth's gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81, 971-974 (1998).
[CrossRef]

Other (3)

G. Biedermann, “Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers,” Ph.D. thesis, Stanford University (2007).

K. Takase, “Precision rotation rate measurements with a mobile atom interferometer,” Ph.D. thesis, Stanford University (2008).

X. Wu, “Gravity gradient survey with a mobile atom interferometer,” Ph.D. thesis, Stanford University (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Diagram of vacuum cell with trapping and Raman beams labeled. The Raman beam is inserted from below and retroreflected for Doppler sensitive experiments.

Fig. 2
Fig. 2

Doppler insensitive π / 2 π π / 2 interferogram ( 2 T = 2.2 ms ). Each point corresponds to an average of six measurements.

Fig. 3
Fig. 3

Contrast versus dwell time for Doppler insensitive π / 4 π / 2 π / 4 , Doppler insensitive π / 2 π π / 2 , and Doppler sensitive π / 2 π π / 2 interferometers.

Fig. 4
Fig. 4

Doppler insensitive π / 4 π / 2 π / 4 interferograms at low Rabi rate (left) and high Rabi rate (right). In both plots, each point corresponds to an average of six measurements. The theoretical fit uses only Rabi rate, contrast, and background as free parameters.

Fig. 5
Fig. 5

Doppler insensitive Raman transition population transfer versus pulse duration. The solid curve was acquired with the cloud centered in the Raman beam and the dotted curve was acquired with the cloud radially displaced by 3 mm . More rapid dephasing is clearly observed in the off-axis case.

Fig. 6
Fig. 6

Diagram of Doppler sensitive Raman beam configuration. The lin . lin . polarization creates two pairs of fields which are resonant with Raman transitions (marked as bold or dashed in the lower and upper beam spectrums.). Other frequency pairs (e.g., ω 1 and the gray sideband) are farther detuned and do not contribute significantly to the effective Rabi rate.

Fig. 7
Fig. 7

Doppler sensitive π / 2 π π / 2 interferogram ( 2 T = 1.5 ms ). Each point corresponds to an average of six measurements.

Fig. 8
Fig. 8

Effect of inhomogeneous broadening and rephasing in two pulse ( n π n π ) interferometer. Open (solid) points correspond to zero (π) phase shift in the second pulse. These profiles are shown for a cloud centered in the Raman beam and a cloud displaced by 3 mm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

| Ψ final , F = 4 | 2 = 1 2 { 1 + cos [ δ R ( T t π / 2 ) ] } 1 8 { 1 cos [ δ R ( 2 T t π ) ] } ,

Metrics