Abstract

We present a method for generating predetermined ultrashort phase-, amplitude-, and polarization-shaped laser pulses at the distal end of a standard silica single-mode fiber. The properties of the fiber are analyzed and included in the shaping procedure. We demonstrate the generation of parametrically shaped pulse sequences consisting of subpulses, which are controlled in their intuitive parameters energy, distance in time, phase, chirp, and state of polarization. A series of experimentally measured double- and triple-pulse sequences demonstrates the capability of this method. Further, the impact of mechanical distortion of the fiber is investigated.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
    [CrossRef] [PubMed]
  2. M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31, 1076–1078(2006).
    [CrossRef] [PubMed]
  3. B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
    [CrossRef]
  4. C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998).
    [CrossRef]
  5. T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett. 26, 647–649 (2001).
    [CrossRef]
  6. Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated ∼500fs pulse transmission over 50km single-mode fiber,” Opt. Lett. 30, 1449–1451 (2005).
    [CrossRef] [PubMed]
  7. S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a ti:sapphire laser,” Opt. Lett. 26, 1320–1322 (2001).
    [CrossRef]
  8. M. T. Myaing, J. Urayama, A. Braun, and T. Norris, “Nonlinear propagation of negatively chirped pulses: maximizing the peak intensity at the output of a fiber probe,” Opt. Express 7, 210–214 (2000).
    [CrossRef] [PubMed]
  9. S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, “Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses,” Opt. Lett. 29, 2602–2604 (2004).
    [CrossRef] [PubMed]
  10. H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength Jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
    [CrossRef] [PubMed]
  11. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
    [CrossRef] [PubMed]
  12. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
    [CrossRef] [PubMed]
  13. C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
    [CrossRef]
  14. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328(1990).
    [CrossRef] [PubMed]
  15. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
    [CrossRef]
  16. T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
    [CrossRef]
  17. M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
    [CrossRef]
  18. M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
    [CrossRef] [PubMed]
  19. M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
    [CrossRef] [PubMed]
  20. O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007).
    [CrossRef] [PubMed]
  21. F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
    [CrossRef] [PubMed]
  22. G. E. Jellison Jr. and D. H. Lowndes, “Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation,” Appl. Phys. Lett. 47, 718–721(1985).
    [CrossRef]
  23. H. Hurwitz and R. C. Jones, “A new calculus for the treatment of optical systems i. description and discussion of the calculus,” J. Opt. Soc. Am. 31, 488–493 (1941).
    [CrossRef]
  24. I. P. Kaminow and T. L. Koch, Optical Fiber Communications (Academic, 2002).
  25. S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
    [CrossRef] [PubMed]
  26. F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
    [CrossRef]
  27. D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
    [CrossRef]
  28. B. von Vacano, W. Wohlleben, and M. Motzkus, “Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,” Opt. Lett. 31, 413–415 (2006).
    [CrossRef] [PubMed]
  29. K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
    [CrossRef] [PubMed]
  30. Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292(2009).
    [CrossRef]
  31. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
    [CrossRef] [PubMed]
  32. M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
    [CrossRef] [PubMed]

2010 (2)

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[CrossRef]

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

2009 (3)

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292(2009).
[CrossRef]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

2008 (1)

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

2007 (7)

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength Jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
[CrossRef] [PubMed]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[CrossRef] [PubMed]

O. Masihzadeh, P. Schlup, and R. A. Bartels, “Complete polarization state control of ultrafast laser pulses with a single linear spatial light modulator,” Opt. Express 15, 18025–18032 (2007).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
[CrossRef]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
[CrossRef]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2004 (1)

2003 (1)

2002 (1)

I. P. Kaminow and T. L. Koch, Optical Fiber Communications (Academic, 2002).

2001 (3)

2000 (2)

1999 (1)

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

1998 (1)

1995 (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

1992 (1)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

1990 (1)

1985 (1)

G. E. Jellison Jr. and D. H. Lowndes, “Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation,” Appl. Phys. Lett. 47, 718–721(1985).
[CrossRef]

1941 (1)

Achermann, M.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Bartels, R. A.

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Bielefeldt, H.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

Boutou, V.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Braun, A.

Brif, C.

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[CrossRef]

Brixner, T.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[CrossRef] [PubMed]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

Cavalieri, A. L.

Chakrabarti, R.

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[CrossRef]

Chang, C.-C.

Clark, S. W.

Courvoisier, F.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

de Abajo, F. J. G.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Feurer, T.

Fritz, D. M.

Galler, A.

Gerber, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

Guyon, L.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Hurwitz, H.

Ilday, F. Ö.

Jellison, G. E.

G. E. Jellison Jr. and D. H. Lowndes, “Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation,” Appl. Phys. Lett. 47, 718–721(1985).
[CrossRef]

Jiang, Z.

Jones, R. C.

Judson, R. S.

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Jung, J. C.

Kaminow, I. P.

I. P. Kaminow and T. L. Koch, Optical Fiber Communications (Academic, 2002).

Keller, U.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

Koch, T. L.

I. P. Kaminow and T. L. Koch, Optical Fiber Communications (Academic, 2002).

König, K.

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[CrossRef] [PubMed]

Leaird, D. E.

Lee, S. H.

Levis, R. J.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
[CrossRef]

Li, X.

Lindinger, A.

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
[CrossRef]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Lorenc, D.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
[CrossRef]

Lowndes, D. H.

G. E. Jellison Jr. and D. H. Lowndes, “Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation,” Appl. Phys. Lett. 47, 718–721(1985).
[CrossRef]

MacDonald, D. J.

Markevitch, A. N.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
[CrossRef]

Masihzadeh, O.

Miao, H.

Miller, P. J.

Mirkin, L.

Motzkus, M.

Myaing, M.

Myaing, M. T.

Nakazawa, M.

Nechay, B. A.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

Ninck, M.

Norris, T.

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[CrossRef] [PubMed]

Patel, J. S.

Pfeiffer, W.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Plewicki, M.

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
[CrossRef]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Rabitz, H.

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[CrossRef]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

Reis, D. A.

Rohmer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Roslund, J.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Roth, M.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Sardesai, H. P.

Schlup, P.

Schnitzer, M. J.

Siegner, U.

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

Silberberg, Y.

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292(2009).
[CrossRef]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

Urayama, J.

Velic, D.

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
[CrossRef]

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[CrossRef] [PubMed]

von Vacano, B.

Weber, S. M.

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
[CrossRef]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Weiner, A. M.

Weise, F.

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
[CrossRef]

M. Plewicki, F. Weise, S. M. Weber, and A. Lindinger, “Phase, amplitude, and polarization shaping with a pulse shaper in a Mach-Zehnder interferometer,” Appl. Opt. 45, 8354–8359(2006).
[CrossRef] [PubMed]

Wise, F. W.

Wohlleben, W.

Wolf, J.-P.

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Wullert, J. R.

Yamamoto, T.

Yang, S.-D.

Annu. Rev. Phys. Chem. (1)

Y. Silberberg, “Quantum coherent control for nonlinear spectroscopy and microscopy,” Annu. Rev. Phys. Chem. 60, 277–292(2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

M. Plewicki, S. M. Weber, F. Weise, and A. Lindinger, “Independent control over the amplitude, phase, and polarization of femtosecond pulses,” Appl. Phys. B 86, 259–263 (2007).
[CrossRef]

F. Weise and A. Lindinger, “Full parametric pulse shaping in phase, amplitude, and polarization using an effective four-array modulator,” Appl. Phys. B 101, 79–91 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

G. E. Jellison Jr. and D. H. Lowndes, “Time-resolved ellipsometry measurements of the optical properties of silicon during pulsed excimer laser irradiation,” Appl. Phys. Lett. 47, 718–721(1985).
[CrossRef]

J. Chem. Phys. (1)

S. M. Weber, M. Plewicki, F. Weise, and A. Lindinger, “Parametric polarization pulse shaping demonstrated for optimal control of NaK,” J. Chem. Phys. 128, 174306 (2008).
[CrossRef] [PubMed]

J. Microsc. (1)

K. König, “Multiphoton microscopy in life sciences,” J. Microsc. 200, 83–104 (2000).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Nature (1)

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. G. de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature 446, 301–304 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

C. Brif, R. Chakrabarti, and H. Rabitz, “Control of quantum phenomena: past, present and future,” New J. Phys. 12, 075008 (2010).
[CrossRef]

Opt. Commun. (1)

D. Lorenc, D. Velic, A. N. Markevitch, and R. J. Levis, “Adaptive femtosecond pulse shaping to control supercontinuum generation in a microstructure fiber,” Opt. Commun. 276, 288–292(2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (13)

S. H. Lee, A. L. Cavalieri, D. M. Fritz, M. Myaing, and D. A. Reis, “Adaptive dispersion compensation for remote fiber delivery of near-infrared femtosecond pulses,” Opt. Lett. 29, 2602–2604 (2004).
[CrossRef] [PubMed]

H. Miao, A. M. Weiner, L. Mirkin, and P. J. Miller, “Broadband all-order polarization mode dispersion compensation via wavelength-by-wavelength Jones matrix correction,” Opt. Lett. 32, 2360–2362 (2007).
[CrossRef] [PubMed]

C.-C. Chang, H. P. Sardesai, and A. M. Weiner, “Dispersion-free fiber transmission for femtosecond pulses by use of a dispersion-compensating fiber and a programmable pulse shaper,” Opt. Lett. 23, 283–285 (1998).
[CrossRef]

T. Yamamoto and M. Nakazawa, “Third- and fourth-order active dispersion compensation with a phase modulator in a terabit-per-second optical time-division multiplexed transmission,” Opt. Lett. 26, 647–649 (2001).
[CrossRef]

Z. Jiang, S.-D. Yang, D. E. Leaird, and A. M. Weiner, “Fully dispersion-compensated ∼500fs pulse transmission over 50km single-mode fiber,” Opt. Lett. 30, 1449–1451 (2005).
[CrossRef] [PubMed]

S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a ti:sapphire laser,” Opt. Lett. 26, 1320–1322 (2001).
[CrossRef]

A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15, 326–328(1990).
[CrossRef] [PubMed]

J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902–904 (2003).
[CrossRef] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31, 1076–1078(2006).
[CrossRef] [PubMed]

M. Ninck, A. Galler, T. Feurer, and T. Brixner, “Programmable common-path vector field synthesizer for femtosecond pulses,” Opt. Lett. 32, 3379–3381 (2007).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, “Femtosecond polarization pulse shaping,” Opt. Lett. 26, 557–559 (2001).
[CrossRef]

F. Weise and A. Lindinger, “Full control over the electric field using four liquid crystal arrays,” Opt. Lett. 34, 1258–1260(2009).
[CrossRef] [PubMed]

B. von Vacano, W. Wohlleben, and M. Motzkus, “Actively shaped supercontinuum from a photonic crystal fiber for nonlinear coherent microspectroscopy,” Opt. Lett. 31, 413–415 (2006).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470–2497 (2007).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500–1503 (1992).
[CrossRef] [PubMed]

M. Roth, L. Guyon, J. Roslund, V. Boutou, F. Courvoisier, J.-P. Wolf, and H. Rabitz, “Quantum control of tightly competitive product channels,” Phys. Rev. Lett. 102, 253001 (2009).
[CrossRef] [PubMed]

Prog. Quantum Electron. (1)

A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995).
[CrossRef]

Rev. Sci. Instrum. (1)

B. A. Nechay, U. Siegner, M. Achermann, H. Bielefeldt, and U. Keller, “Femtosecond pump-probe near-field optical microscopy,” Rev. Sci. Instrum. 70, 2758–2764 (1999).
[CrossRef]

Other (1)

I. P. Kaminow and T. L. Koch, Optical Fiber Communications (Academic, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup for generation and characterization of polarization-shaped femtosecond laser pulses after transmission through a single-mode step-index fiber.

Fig. 2
Fig. 2

Analysis of the birefringence of the step-index fiber. The incident pulses are linearly polarized along different orientations. The pulse’s state of polarization after propagation (b) through the fiber is calculated from the measured power after a rotating analyzing polarizer (a).

Fig. 3
Fig. 3

Ultrashort single pulses after transmission through the fiber having different polarization. (a) Linear, (b) elliptical, and (c) circular.

Fig. 4
Fig. 4

Illustration of the parametric pulse shaping procedure including the compensation of dispersion and birefringence of the fiber. In (a), the retardance pattern which is written on the modulator to generate a sequence of two linearly orthogonally polarized subpulses separated by 600 fs after the optical fiber is shown. The resulting pulse before and after propagation through the fiber is depicted in (b) and (c), respectively.

Fig. 5
Fig. 5

Control of the ellipticity in a double pulse sequence. The second subpulse is constantly linearly polarized in horizontal direction. In (a), the ellipticity of the first subpulse is changed from vertical polarization ( 1.0 π ), via elliptical and circular polarization ( 0.5 π ), to horizontal polarization (0.0) and back. The sign of the difference retardance changes the helicity from left- to right-hand polarization. In (b), (c), and (d), the time evolution and the three-dimensional representation of the corresponding double pulses is shown.

Fig. 6
Fig. 6

Complex polarization-shaped triple pulse sequences. In this sequence, energy, polarization state, distance in time, and chirp is varied. For detailed pulse parameters see Section 5 (Example Pulses).

Fig. 7
Fig. 7

Variation of the polarization state after the step-index fiber due to mechanical stress. The stress is induced by twisting the fiber. The impact on the transmitted pulse is investigated using left- and right-handed circular polarized pulses. The state of polarization is characterized by the ellipticity, which is depicted in (a), and the orientation, which is depicted in (b).

Fig. 8
Fig. 8

Mechanical stress is induced by a knot in the fiber. (a) Photograph of the knotted fiber. (b) Double pulse sequence transmitted through the knotted fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r = tan ( ϵ 2 ) ϵ = 2 arctan ( r ) .
E out ( ω n ) = E 0 ( ω n ) e i 2 ( φ a ( ω n ) + φ b ( ω n ) + φ c ( ω n ) + φ d ( ω n ) ) × cos ( φ a ( ω n ) φ b ( ω n ) 2 ) × [ cos ( φ c ( ω n ) φ d ( ω n ) 2 ) i sin ( φ c ( ω n ) φ d ( ω n ) 2 ) g ] .
φ a ( ω n ) + φ b ( ω n ) + Φ fiber ( ω n ) φ a comp ( ω n ) + φ b comp ( ω n ) ,
φ c ( ω n ) φ d ( ω n ) ϵ fiber φ c comp ( ω n ) φ d comp ( ω n ) .

Metrics