Abstract

We studied the spectral behavior of a probe transmission in the presence of a counterpropagating pump beam for various laser polarizations and magnetic fields with and without the assistance of an additional repopulation laser beam. These parametric studies enabled us to distinctively extricate the influence of saturation, optical pumping, and resonant light pressure. The enhanced probe absorption resulting from the pump-beam-induced Zeeman substate dressing was maximized when the change in the resonance frequency was suitably compensated by the change in the Doppler shift arising from resonant light pressure. The possibility of tuning the laser frequency locked to saturation absorption spectroscopy was investigated and implemented to a laser cooling and trapping setup.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2004).
  2. T. Dinneen, C. Wallace, and P. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282(1992).
    [CrossRef]
  3. K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
    [CrossRef]
  4. S. Baluchev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970–4974 (2000).
    [CrossRef]
  5. L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
    [CrossRef]
  6. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998).
    [CrossRef]
  7. M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
    [CrossRef]
  8. V. Yashchuk, D. Budker, and J. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instr. 71, 341–346 (2000).
    [CrossRef]
  9. M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
    [CrossRef]
  10. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
    [CrossRef]
  11. K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
    [CrossRef]
  12. S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” J. Appl. Phys. 24, 1–7 (1985).
    [CrossRef]
  13. P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
    [CrossRef]
  14. S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
    [CrossRef]
  15. C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
    [CrossRef] [PubMed]
  16. K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082–4090 (1992).
    [CrossRef] [PubMed]
  17. A. M. Stean, M. Chowdhury, and C. J. Foot, “Radiation force in a magneto-optical trap,” J. Opt. Soc. Am. B 9, 2142–2158 (1992).
    [CrossRef]
  18. G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
    [CrossRef] [PubMed]
  19. H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
    [CrossRef]
  20. G. Moon and H. Noh, “Analytic solutions for the saturated absorption spectra,” J. Opt. Soc. Am. B 25, 701–711 (2008).
    [CrossRef]

2008 (1)

2006 (1)

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

2005 (1)

S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
[CrossRef]

2004 (1)

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

2002 (1)

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

2001 (1)

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

2000 (3)

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
[CrossRef]

V. Yashchuk, D. Budker, and J. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instr. 71, 341–346 (2000).
[CrossRef]

S. Baluchev, N. Friedman, L. Khaykovich, D. Carasso, B. Johns, and N. Davidson, “Tunable and frequency-stabilized diode laser with a Doppler-free two-photon Zeeman lock,” Appl. Opt. 39, 4970–4974 (2000).
[CrossRef]

1998 (1)

1992 (4)

T. Dinneen, C. Wallace, and P. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282(1992).
[CrossRef]

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082–4090 (1992).
[CrossRef] [PubMed]

A. M. Stean, M. Chowdhury, and C. J. Foot, “Radiation force in a magneto-optical trap,” J. Opt. Soc. Am. B 9, 2142–2158 (1992).
[CrossRef]

1990 (1)

C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
[CrossRef] [PubMed]

1987 (1)

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

1985 (1)

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” J. Appl. Phys. 24, 1–7 (1985).
[CrossRef]

1980 (1)

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Adams, C. S.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Avila, G.

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

Baluchev, S.

Budker, D.

V. Yashchuk, D. Budker, and J. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instr. 71, 341–346 (2000).
[CrossRef]

Burns, M. M.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Candelier, V.

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

Carasso, D.

Cerez, P.

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

Chowdhury, M.

Clifford, M. A.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
[CrossRef]

Conroy, R. S.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
[CrossRef]

Cornish, S. L.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Corwin, K. L.

Davidson, N.

Davis, J.

V. Yashchuk, D. Budker, and J. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instr. 71, 341–346 (2000).
[CrossRef]

De Clercq, E.

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

Demtroder, W.

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2004).

Dholkia, K.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
[CrossRef]

Dinneen, T.

T. Dinneen, C. Wallace, and P. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282(1992).
[CrossRef]

Epstein, R. J.

Feld, M. S.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Foot, C. J.

Friedman, N.

Gaur, S. J.

S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
[CrossRef]

Giordano, V.

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

Gould, P.

T. Dinneen, C. Wallace, and P. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282(1992).
[CrossRef]

Hand, C. F.

Harris, M. L.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Hawthorn, C. J.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Hinshelwood, D. D.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Hughes, I. G.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

Im, K.

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

Jagatap, B. N.

S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
[CrossRef]

Johns, B.

Jung, H.

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

Khaykovich, L.

Kim, P.

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

Lancaster, G. P. T.

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
[CrossRef]

Lee, H.

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

Lindquist, K.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082–4090 (1992).
[CrossRef] [PubMed]

Lu, Z.-T.

MacAdam, K. B.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Manohar, K. G.

S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
[CrossRef]

McLeod, I. C.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Metcalf, H. J.

H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Monroe, C.

C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
[CrossRef] [PubMed]

Moon, G.

Murnick, D. E.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Nakayama, S.

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” J. Appl. Phys. 24, 1–7 (1985).
[CrossRef]

Noh, H.

Oh, C.

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

Pappas, P. G.

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

Pradhan, S.

S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
[CrossRef]

Robinson, H.

C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
[CrossRef] [PubMed]

Scholten, R. E.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Smith, D. A.

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

Song, S.

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

Stean, A. M.

Steinbach, A.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

Stephens, M.

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082–4090 (1992).
[CrossRef] [PubMed]

Swan, W.

C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
[CrossRef] [PubMed]

Tarleton, E.

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

Theobald, G.

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

Turner, L. D.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Van der Straten, P.

H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Wallace, C.

T. Dinneen, C. Wallace, and P. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282(1992).
[CrossRef]

Weber, K. P.

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

Wieman, C.

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082–4090 (1992).
[CrossRef] [PubMed]

C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
[CrossRef] [PubMed]

Wieman, C. E.

Yashchuk, V.

V. Yashchuk, D. Budker, and J. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instr. 71, 341–346 (2000).
[CrossRef]

Am. J. Phys. (2)

K. B. MacAdam, A. Steinbach, and C. Wieman, “A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys. 60, 1098–1111 (1992).
[CrossRef]

D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (1)

S. Nakayama, “Theoretical analysis of Rb and Cs D2 lines in Doppler-free spectroscopic techniques with optical pumping,” J. Appl. Phys. 24, 1–7 (1985).
[CrossRef]

J. Mod. Opt. (1)

M. A. Clifford, G. P. T. Lancaster, R. S. Conroy, and K. Dholkia, “Stabilization of an 852nm extended cavity diode laser using the Zeeman effect,” J. Mod. Opt. 47, 1933–1940 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

L. D. Turner, K. P. Weber, C. J. Hawthorn, and R. E. Scholten, “Frequency noise characterization of narrow linewidth diode lasers,” Opt. Commun. 201, 391–397 (2002).
[CrossRef]

T. Dinneen, C. Wallace, and P. Gould, “Narrow linewidth, highly stable, tunable diode laser system,” Opt. Commun. 92, 277–282(1992).
[CrossRef]

Phys. Rev. A (5)

K. Im, H. Jung, C. Oh, S. Song, P. Kim, and H. Lee, “Saturated absorption signals for the Cs D2 line,” Phys. Rev. A 63, 034501(2001).
[CrossRef]

G. Avila, V. Giordano, V. Candelier, E. De Clercq, G. Theobald, and P. Cerez, “State selection in a cesium beam by laser-diode optical pumping,” Phys. Rev. A 36, 3719–3728 (1987).
[CrossRef] [PubMed]

M. L. Harris, C. S. Adams, S. L. Cornish, I. C. McLeod, E. Tarleton, and I. G. Hughes, “Polarization spectroscopy in rubidium and cesium,” Phys. Rev. A 73, 062509 (2006).
[CrossRef]

P. G. Pappas, M. M. Burns, D. D. Hinshelwood, M. S. Feld, and D. E. Murnick, “Saturation spectroscopy with laser optical pumping in atomic barium,” Phys. Rev. A 21, 1955–1968 (1980).
[CrossRef]

S. Pradhan, S. J. Gaur, K. G. Manohar, and B. N. Jagatap, “Enhancement in the number of trapped atoms in a cesium magneto-optical trap by a near resonant control laser,” Phys. Rev. A 72, 053407 (2005).
[CrossRef]

Phys. Rev. A. (1)

K. Lindquist, M. Stephens, and C. Wieman, “Experimental and theoretical study of the vapor-cell Zeeman optical trap,” Phys. Rev. A. 46, 4082–4090 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

C. Monroe, W. Swan, H. Robinson, and C. Wieman, “Very cold trapped atoms in a vapor cell,” Phys. Rev. Lett. 65, 1571–1574(1990).
[CrossRef] [PubMed]

Rev. Sci. Instr. (1)

V. Yashchuk, D. Budker, and J. Davis, “Laser frequency stabilization using linear magneto-optics,” Rev. Sci. Instr. 71, 341–346 (2000).
[CrossRef]

Other (2)

W. Demtroder, Laser Spectroscopy: Basic Concepts and Instrumentation (Springer, 2004).

H. J. Metcalf and P. Van der Straten, Laser Cooling and Trapping (Springer, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup to study probe transmission in the presence of a counterpropagating pump beam for various laser polarizations and magnetic fields. For some experiments, we had incorporated a linearly polarized repump laser copropagating and overlapped with the pump laser beam (not shown in this schematic diagram): ECDL, external cavity diode laser; DAC, digital-to-analog converter; ADC, analog-to-digital converter; PC, computer; PSD, phase-sensitive detector; PD, photodiode; M, mirror; BS, beam splitter; Ch, optical chopper; ELC, electronic locking circuit; Q, quarter-wave plate; Cs, cesium vapor cell; Mc, magnetic coils in the Helmoltz configuration; PMT, photomultiplier tube; and MOT, magneto-optical trap.

Fig. 2
Fig. 2

(a) Schematic diagram illustrating the role of the repump laser to shield the effect of optical pumping in the SAS profile. The gray arrow (solid arrow) represents the frequency-stabilized repump (tunable SAS) laser frequency. The pump laser optically transfers the ground state population from 6 s 1 / 2 F = 4 to a 6 s 1 / 2 F = 3 hyperfine level, even when the laser was tuned to the 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 cycling transition, as shown by the black dashed arrow. The introduction of the repump brings these lost atoms back to 6 s 1 / 2 F = 4 , as represented by the gray dashed arrow, thereby annulling the contribution of optical pumping in the SAS profile. (b) Effect of the repump laser beam on the line shape of the SAS spectra. The dotted (solid) curve corresponds to the SAS spectra without (with) the repump laser beam. Peaks A, D, and F correspond to the 6 s 1 / 2 F = 4 6 p 3 / 2 F = 3 , 4, 5 hyperfine transition, respectively. Peaks B, C, and E were the crossover resonances. Peaks C and D were not resolved in this experiment. The significant reduction of the signal strength of the 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 transition in the presence of the repump laser demonstrated the role of hyperfine optical pumping in the SAS profile. The amplitude of the other noncycling transition exhibited minimal changes as the effect of the rapid hyperfine optical pumping was not totally circumvented by the repump laser beam.

Fig. 3
Fig. 3

(a) Schematic diagram to illustrate the underlying mechanism behind enhancement of the cycling transition for an orthogonal- circularly polarized pump–probe beam. The σ + polarized pump beam (black thick arrow) accumulated the population in the stretch state by Zeeman optical pumping, from which the relative transition amplitude (S) for the σ polarized probe beam (thin gray arrow) was 45 times weaker than the σ + polarized pump beam. Thus the strong saturation by the pump beam in addition to the relatively weak scattering cross section of the probe beam enhanced the SAS profile corresponding to the cycling transition. (b) SAS signal of 6 s 1 / 2 F = 4 6 p 3 / 2 F = 3 , 4, 5 transitions of Cs. The gray dotted curve (A) represents the plane polarized pump and probe beams and B = 0 . The black dotted curve (B) is for the pump and probe beam with σ + σ polarization configuration at B = 0 . The black solid curve (C) represents the signal taken with pump and probe beam in σ + σ configuration and B 4.7 G . The gray solid curve (D) represents experimental data for σ + σ + (similar for σ σ ) polarization of pump and probe beam at zero magnetic field.

Fig. 4
Fig. 4

SAS signal of cesium 6 s 1 / 2 F = 4 6 p 3 / 2 F = 3 , 4, 5 hyperfine transitions (F, D and A respectively) when the pump and probe beams were σ + σ + polarized and in presence of homogeneous magnetic fields of (a) 0, (b) 5, and (c) 146 G . Peaks B, C, and E were the crossover line. Curve (c) had a DC offset of 0.5 for better visualization. The frequency response of the fluorescence from the MOT is shown by (d) which was used as a frequency reference. The shifting of the SAS peaks was reversed when the magnetic field was in the opposite direction.

Fig. 5
Fig. 5

Zeeman shifting of the peak of 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 transition for σ + σ + ( σ + σ ) pump–probe polarization is shown by the gray solid square (black solid circle) symbol, and the black (gray) straight line is the expected theoretical behavior. Please see the text for details. The corresponding height of this transition is represented by the hollow square (circle) symbol.

Fig. 6
Fig. 6

(a) Mechanism behind the observed dip in the SAS profile. The double-ended arrow represents the laser frequency tuned to the F = 4 , m f = + 2 F = 5 , m f = + 3 transition. The σ + polarized pump (thick arrow) and σ + polarized probe (thin arrow) frequency as seen in the atomic frame of reference for a velocity group of atoms having mean velocity v 1 . The pump beam increased the population of m f = + 3 by Zeeman optical pumping (as shown by the thick dashed arrow), thereby increasing the probe absorption in the presence of the pump beam. (b) The SAS profile for σ + σ + polarized pump–probe beam at a magnetic field of + 63 G (solid black curve), 63 G (gray curve), 135 G (dotted gray curve). The dotted black line represents the zero level of the signal. The horizontal axis corresponds to the laser detuning from the field-free 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 transition. The dip in the SAS profile was observed at higher (lower) frequency then the 6 s 1 / 2 F = 4 , m f = + 4 6 p 3 / 2 F = 5 , m f = + 5 transition at the corresponding negative (positive) magnetic field. This observation was consistent with the model described in Fig. 6a.

Fig. 7
Fig. 7

(a) The schematic diagram to understand the role of Zeeman optical pumping and the radiation force in the observed pump-beam-induced probe absorption. The laser frequency is shown by the double-ended arrow and had a frequency corresponding to F = 4 , m f = + 2 F = 5 , m f = + 3 transition. The pump (thick arrow) and probe (thin arrow) frequency as seen in the atomic frame of reference for a velocity group of atoms having mean velocity 2 v 1 and v 1 and v 1 , respectively. The change in the resonance frequency due to Zeeman optical pumping could be compensated by the radiation pressure induced velocity change to keep the pump beam in resonance, thereby increasing the ground state population of a velocity group of atoms in resonance with the probe beam. Please see the text for details. (b) The shift in the position of the dip near 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 and its amplitude as a function of applied magnetic field. The shift in the position of the dip linearly fit (solid gray line) with a slope of 0.88 MHz / G . This was very close to the expected slope of 0.98 MHz / G for the 6 s 1 / 2 F = 4 , m f = + 2 6 p 3 / 2 F = 5 , m f = + 3 transition. The amplitude of this pump-beam-induced absorption was asymmetrical under the reversal of the magnetic field and maximized for a magnetic field of 62 G .

Fig. 8
Fig. 8

Relative number of trapped atoms in the MOT as a function of the magnetic field. The laser frequency was locked at 96 MHz from the 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 transition at B 5.5 G , which lay on the shoulder of the crossover signal [peak B in Fig. 2b]. Inset, tuning curve for the laser locked on the shoulder of the crossover line [peak B in Fig. 2b]. The Y axis corresponds to the laser frequency detuning from the field-free 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 transition. The lock positions were at a detuning (measured from 6 s 1 / 2 F = 4 6 p 3 / 2 F = 5 transition) of 88 MHz (solid circle), 71 MHz (hollow circle) on the field-free spectrum and 76 MHz on the spectrum at 5.5 G (solid square). Solid curves, denoted by (a), (b), and (c), show the average tuning curves for the respective lock positions. The dashed horizontal line corresponds to the optimum frequency for the maximum number of trapped atoms.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L k ( I P ) S k s 1 + s + 1 + s ( Δ ν / 2 ) 2 δ k 2 + ( Δ ν / 2 ) 2 [ 1 + ε r τ tr δ k Δ ν δ k 2 + ( Δ ν / 2 ) 2 ] + P k s k 1 + s k + 1 + s k ( Δ ν k / 2 ) 2 δ k 2 + ( Δ ν k / 2 ) 2 ,

Metrics