Abstract

We investigate field enhancements in two-dimensional 800nm periodic arrays of (108121nm deep) V-grooves (opening angles 38°75°) fabricated using focused ion beam milling in a 190nm thick gold film on top of a fused silica substrate. Simulated and experimental reflection spectra, high-resolution two-photon luminescence (TPL) images, and microscopy of surface-enhanced Raman scattering (SERS) obtained from the V-groove metal arrays are compared and reveal good correspondence in the spectral dependences of reflection and local TPL as well as SERS measured at the groove bottom. We relate the obtained field intensity enhancements, reaching 85 with nanofocusing and resonant interference of counterpropagating plasmons by the periodic closed tapered groove gaps. The achieved reflection spectra and enhancements depend on the geometry of the V-groove arrays and can actually be tuned in the wavelength range from visible to infrared, making this configuration promising for a wide range of practical applications, e.g., within surface-enhanced spectroscopies.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
    [CrossRef] [PubMed]
  2. Y. Liu, C. Yu, and S. Sheu, “Low concentration rhodamine 6 G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates,” J. Mater. Chem. 16, 3546–3551 (2006).
    [CrossRef]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
    [CrossRef]
  4. G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
    [CrossRef]
  5. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]
  6. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
    [CrossRef]
  7. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  8. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
    [CrossRef] [PubMed]
  9. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
    [CrossRef] [PubMed]
  10. A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
    [CrossRef]
  11. A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335, 275–371 (2000).
    [CrossRef]
  12. S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003).
    [CrossRef] [PubMed]
  13. J. Beermann, S. I. Bozhevolnyi, and V. Coello, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006).
    [CrossRef]
  14. J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
    [CrossRef] [PubMed]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B. 80, 195407 (2009).
    [CrossRef]
  16. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
    [CrossRef]
  17. A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
    [CrossRef]
  18. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 33, 7923–7936 (1986).
    [CrossRef]
  19. M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
    [CrossRef]
  20. A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
    [CrossRef]
  21. J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302–17309 (2008).
    [CrossRef] [PubMed]
  22. J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Physica Status Solidi (c) 2, 3983–3987 (2005).
    [CrossRef]
  23. J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25, 1585–1592 (2008).
    [CrossRef]
  24. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A Pure Appl. Opt. 11, 075004 (2009).
    [CrossRef]
  25. J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705 (2009).
    [CrossRef] [PubMed]
  26. J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
    [CrossRef]
  27. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [CrossRef] [PubMed]
  28. A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
    [CrossRef]
  29. T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
    [CrossRef]
  30. J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004).
    [CrossRef]
  31. J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
    [CrossRef]
  32. A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
    [CrossRef]
  33. H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
    [CrossRef]
  34. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
    [CrossRef] [PubMed]
  35. A. Otto, “Surface-enhanced Raman scattering of adsorbates,” J. Raman Spectrosc. 22, 743–752 (1991).
    [CrossRef]
  36. D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
    [CrossRef]
  37. E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
    [CrossRef]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

2009 (4)

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B. 80, 195407 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A Pure Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705 (2009).
[CrossRef] [PubMed]

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
[CrossRef]

2008 (5)

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302–17309 (2008).
[CrossRef] [PubMed]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25, 1585–1592 (2008).
[CrossRef]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

2007 (4)

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
[CrossRef] [PubMed]

2006 (5)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, and V. Coello, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006).
[CrossRef]

Y. Liu, C. Yu, and S. Sheu, “Low concentration rhodamine 6 G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates,” J. Mater. Chem. 16, 3546–3551 (2006).
[CrossRef]

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

2005 (3)

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Physica Status Solidi (c) 2, 3983–3987 (2005).
[CrossRef]

2004 (2)

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004).
[CrossRef]

2003 (4)

J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

2000 (1)

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

1999 (1)

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

1997 (1)

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

1991 (1)

A. Otto, “Surface-enhanced Raman scattering of adsorbates,” J. Raman Spectrosc. 22, 743–752 (1991).
[CrossRef]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

1984 (1)

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
[CrossRef]

1969 (1)

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[CrossRef]

Albrektsen, O.

Aubard, J.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Beermann, J.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A Pure Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705 (2009).
[CrossRef] [PubMed]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302–17309 (2008).
[CrossRef] [PubMed]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25, 1585–1592 (2008).
[CrossRef]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, and V. Coello, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Physica Status Solidi (c) 2, 3983–3987 (2005).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

Blackie, E.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Boltasseva, A.

Boltasseva, A. E.

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302–17309 (2008).
[CrossRef] [PubMed]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
[CrossRef]

Bozhevolnyi, S. I.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B. 80, 195407 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A Pure Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705 (2009).
[CrossRef] [PubMed]

J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302–17309 (2008).
[CrossRef] [PubMed]

J. Beermann, A. Evlyukhin, A. Boltasseva, and S. I. Bozhevolnyi, “Nonlinear microscopy of localized field enhancements in fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 25, 1585–1592 (2008).
[CrossRef]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

J. Beermann, I. P. Radko, A. Boltasseva, and S. I. Bozhevolnyi, “Localized field enhancements in fractal shaped periodic metal nanostructures,” Opt. Express 15, 15234–15241 (2007).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, and V. Coello, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Physica Status Solidi (c) 2, 3983–3987 (2005).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

Coello, V.

J. Beermann, S. I. Bozhevolnyi, and V. Coello, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006).
[CrossRef]

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

Dasari, R. R.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Devaux, E.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Etchegoin, P. G.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Evlyukhin, A.

Fage-Pedersen, J.

J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
[CrossRef]

Feld, M. S.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Félidj, N.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Garcia-Vidal, F.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Garcia-Vidal, F. J.

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

Grand, J.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Hohenau, A.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Itzkan, I.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Johansson, P.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Käll, M.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Kinkhabwala, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

Kino, G. S.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Krenn, J. R.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Le Ru, E. C.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Leite, J. R. R.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
[CrossRef]

Leosson, K.

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A Pure Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman imaging: periodic arrays and individual metal nanoparticles,” Opt. Express 17, 12698–12705 (2009).
[CrossRef] [PubMed]

Lévi, G.

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

Liu, Y.

Y. Liu, C. Yu, and S. Sheu, “Low concentration rhodamine 6 G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates,” J. Mater. Chem. 16, 3546–3551 (2006).
[CrossRef]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Martin-Moreno, L.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Mooradian, A.

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Nielsen, M. G.

Novikov, S. M.

Novotny, L.

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Otto, A.

A. Otto, “Surface-enhanced Raman scattering of adsorbates,” J. Raman Spectrosc. 22, 743–752 (1991).
[CrossRef]

Pedersen, K.

J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
[CrossRef]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

Persson, M. P.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Quidant, R.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

Radko, I. P.

Rasing, Th.

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
[CrossRef]

Rodrigo, S. G.

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sarychev, A. K.

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Shalaev, V. M.

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
[CrossRef]

Sheu, S.

Y. Liu, C. Yu, and S. Sheu, “Low concentration rhodamine 6 G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates,” J. Mater. Chem. 16, 3546–3551 (2006).
[CrossRef]

Søndergaard, T.

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B. 80, 195407 (2009).
[CrossRef]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

J. Beermann, S. M. Novikov, T. Søndergaard, A. E. Boltasseva, and S. I. Bozhevolnyi, “Two-photon mapping of localized field enhancements in thin nanostrip antennas,” Opt. Express 16, 17302–17309 (2008).
[CrossRef] [PubMed]

T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15, 4198–4204 (2007).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Wang, X.-H.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Xu, H.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Xu, H. Q.

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Yu, C.

Y. Liu, C. Yu, and S. Sheu, “Low concentration rhodamine 6 G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates,” J. Mater. Chem. 16, 3546–3551 (2006).
[CrossRef]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

A. Bouhelier, M. R. Beversluis, and L. Novotny, “Characterization of nanoplasmonic structures by locally excited photoluminescence,” Appl. Phys. Lett. 83, 5041–5043 (2003).
[CrossRef]

J. Chem. Phys. (1)

D. P. Fromm, A. Sundaramurthy, A. Kinkhabwala, P. J. Schuck, G. S. Kino, and W. E. Moerner, “Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas,” J. Chem. Phys. 124, 061101 (2006).
[CrossRef]

J. Mater. Chem. (1)

Y. Liu, C. Yu, and S. Sheu, “Low concentration rhodamine 6 G observed by surface-enhanced Raman scattering on optimally electrochemically roughened silver substrates,” J. Mater. Chem. 16, 3546–3551 (2006).
[CrossRef]

J. Opt. A Pure Appl. Opt. (2)

A. Hohenau, J. R. Krenn, F. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” J. Opt. A Pure Appl. Opt. 9, S366–S371 (2007).
[CrossRef]

J. Beermann, S. M. Novikov, K. Leosson, and S. I. Bozhevolnyi, “Surface enhanced Raman microscopy with metal nanoparticle arrays,” J. Opt. A Pure Appl. Opt. 11, 075004 (2009).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

E. C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J. R. Krenn, E. Blackie, and P. G. Etchegoin, “Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects,” J. Phys. Chem. C 112, 8117–8121 (2008).
[CrossRef]

J. Phys. Condens. Matter (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Surface-enhanced Raman scattering and biophysics,” J. Phys. Condens. Matter 14, R597–R624 (2002).
[CrossRef]

J. Raman Spectrosc. (1)

A. Otto, “Surface-enhanced Raman scattering of adsorbates,” J. Raman Spectrosc. 22, 743–752 (1991).
[CrossRef]

Nano Lett. (1)

T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010).
[CrossRef]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–205 (2010).
[CrossRef] [PubMed]

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[CrossRef] [PubMed]

Opt. Commun. (1)

J. Beermann, S. I. Bozhevolnyi, K. Pedersen, and J. Fage-Pedersen, “High-resolution second-harmonic microscopy of poled silica waveguides,” Opt. Commun. 221, 295–300(2003).
[CrossRef]

Opt. Express (4)

Phys. Rep. (1)

A. K. Sarychev and V. M. Shalaev, “Electromagnetic field fluctuations and optical nonlinearities in metaldielectric composites,” Phys. Rep. 335, 275–371 (2000).
[CrossRef]

Phys. Rev. B (8)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 33, 7923–7936 (1986).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, “Continuum generation from single gold nanostructures through near-field mediated intraband transitions,” Phys. Rev. B 68, 115433 (2003).
[CrossRef]

G. T. Boyd, Th. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B 30, 519–526 (1984).
[CrossRef]

J. Beermann, S. I. Bozhevolnyi, and V. Coello, “Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures,” Phys. Rev. B 73, 115408 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, J. Beermann, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martin-Moreno, and F. Garcia-Vidal, “Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: Experiment and theory,” Phys. Rev. B 73, 155404 (2006).
[CrossRef]

T. Søndergaard, J. Beermann, A. E. Boltasseva, and S. I. Bozhevolnyi, “Slow-plasmon resonant-nanostrip antennas: analysis and demonstration,” Phys. Rev. B 77, 115420 (2008).
[CrossRef]

J. Beermann and S. I. Bozhevolnyi, “Microscopy of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. B 69, 155429 (2004).
[CrossRef]

A. Hohenau, J. R. Krenn, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, J. Beermann, and S. I. Bozhevolnyi, “Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films,” Phys. Rev. B 75, 085104 (2007).
[CrossRef]

Phys. Rev. B. (1)

T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B. 80, 195407 (2009).
[CrossRef]

Phys. Rev. Lett. (7)

S. I. Bozhevolnyi, J. Beermann, and V. Coello, “Direct observation of localized second-harmonic enhancement in random metal nanostructures,” Phys. Rev. Lett. 90, 197403 (2003).
[CrossRef] [PubMed]

A. Mooradian, “Photoluminescence of metals,” Phys. Rev. Lett. 22, 185–187 (1969).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78, 1667–1670 (1997).
[CrossRef]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101, 116805(2008).
[CrossRef] [PubMed]

P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, and W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

H. Xu, X.-H. Wang, M. P. Persson, H. Q. Xu, M. Käll, and P. Johansson, “Unified treatment of fluorescence and Raman scattering processes near metal surfaces,” Phys. Rev. Lett. 93, 243002 (2004).
[CrossRef]

Physica Status Solidi (c) (1)

J. Beermann and S. I. Bozhevolnyi, “Two-photon luminescence microscopy of field enhancement at gold nanoparticles,” Physica Status Solidi (c) 2, 3983–3987 (2005).
[CrossRef]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609(2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM image of a 2D V-groove array (period Λ x = Λ y = 800 nm ) milled by FIB in a 190 nm thick gold film and having groove depth d 121 nm and total angle θ 38 ° . (b) Reflection spectra obtained experimentally (solid curves) for x-polarized illumination and detection from two different 2D V-groove arrays A1 and A2 with opening angles θ 75 ° and 38 ° and depths d 108 and 121 nm , respectively. The spectra obtained for y-polarization appeared similar. Dashed and dot-dashed curves in (b) are theoretical reflection spectra for simplified 1D gratings of V-grooves with depths and angles as A1 and A2.

Fig. 2
Fig. 2

(a)–(b) Typical (pseudocolor) TPL-SOM images of the 2D V-groove array A2 (angle 38 ° , depth 121 nm ), obtained at λ = 780 nm for (a) x- and (b) y-polarized excitation as indicated by arrows. The maximum TPL signal was (a)  470 cps and (b)  650 cps obtained at 0.7 mW . (c) Cross-sections averaged over 10 adjacent lines of TPL (dashed curve, squares) and FH (solid curve, circles) images obtained for x-polarized excitation.

Fig. 3
Fig. 3

Experimental wavelength dependence of the FE estimated via TPL from V-grooves orientated perpendicular to the in-plane (x- or y-polarized) excitation for arrays A1 and A2 with groove opening angles 75 ° and 38 ° , and depths 108 and 121 nm , respectively.

Fig. 4
Fig. 4

(a)–(b) Raman images obtained by mapping the Raman intensity integrated over 605 620 cm 1 from R 6 G adsorbed on V-groove array A2 (angle 38 ° , depth 121 nm ) for (a) x- and (b) y-polarized excitation as indicated by arrows. (c) Raman spectra of R 6 G adsorbed on arrays A1 and A2 with angles 75 ° and 38 ° , and depths 108 and 121 nm , respectively and at the smooth (reference) gold substrate outside the array. The shaded column indicates the spectral range used for imaging in (a)–(b).

Fig. 5
Fig. 5

FE from V-groove arrays A1 and A2 with angles 75 ° and 38 ° , and depths 108 and 121 nm , respectively, estimated by comparing levels at each pronounced R 6 G Raman peak with levels obtained in the reference spectrum and normalized with the opening angle and area supporting the Raman enhancement. For the 532 nm excitation wavelength used, the range of Raman shifts shown, 600 1650 cm 1 , corresponds to wavelengths from 550 583 nm .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α 2 = TPL groove P ref 2 A ref TPL ref P groove 2 A groove ,

Metrics