Abstract

An approach for the simulation of active plasmonics devices is presented in this paper. In the proposed approach, a multilevel multielectron quantum model is applied to the solid state part of a structure, where the electron dynamics are governed by the Pauli exclusion principle, state filling, and dynamical Fermi–Dirac thermalization, while for the metallic part, the Lorentz–Drude dispersive model is incorporated into Maxwell’s equations. The finite difference time domain method is applied to the resulting equations. For numerical results, the de veloped methodology is applied to a metal–semiconductor–metal plasmonic waveguide and a microcavity resonator.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).
  2. M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophtonics (Springer, 2007).
    [CrossRef]
  3. I. Ahmed, C. E. Png, E. P. Li, and R. Vahldieck, “Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure,” Opt. Express 17, 337–345 (2009).
    [CrossRef] [PubMed]
  4. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
    [CrossRef]
  5. A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonics integration with dielectric loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
    [CrossRef]
  6. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
    [CrossRef] [PubMed]
  7. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
    [CrossRef]
  8. Y. Huang and S. T. Ho, “Computational model of solid state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006).
    [CrossRef] [PubMed]
  9. E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett. 95, 121104–121106 (2009).
    [CrossRef]
  10. E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
    [CrossRef]
  11. Y. Huang and S. T. Ho, “Simulation of electrically-pumped nanophotonic lasers using dynamical semiconductor medium FDTD method,” in 2nd IEEE International Nanoelectronics Conference, (IEEE, 2008), pp. 202–205.
    [CrossRef]
  12. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski,“Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  13. I. Ahmed, E. P. Li, and E. H. Khoo, “Interactions between magnetic and non-magnetic materials for plasmonics,” in International Conference on Materials and Advanced Technologies (Materials Research Society of Singapore, 2009).
  14. K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
    [CrossRef]
  15. I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
    [CrossRef]
  16. S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
    [CrossRef]

2010 (2)

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
[CrossRef]

2009 (6)

I. Ahmed, E. P. Li, and E. H. Khoo, “Interactions between magnetic and non-magnetic materials for plasmonics,” in International Conference on Materials and Advanced Technologies (Materials Research Society of Singapore, 2009).

K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
[CrossRef]

E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett. 95, 121104–121106 (2009).
[CrossRef]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

I. Ahmed, C. E. Png, E. P. Li, and R. Vahldieck, “Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure,” Opt. Express 17, 337–345 (2009).
[CrossRef] [PubMed]

2008 (3)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
[CrossRef]

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonics integration with dielectric loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Y. Huang and S. T. Ho, “Simulation of electrically-pumped nanophotonic lasers using dynamical semiconductor medium FDTD method,” in 2nd IEEE International Nanoelectronics Conference, (IEEE, 2008), pp. 202–205.
[CrossRef]

2007 (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophtonics (Springer, 2007).
[CrossRef]

2006 (1)

1998 (1)

1991 (1)

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

Ahmed, I.

I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
[CrossRef]

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett. 95, 121104–121106 (2009).
[CrossRef]

I. Ahmed, C. E. Png, E. P. Li, and R. Vahldieck, “Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure,” Opt. Express 17, 337–345 (2009).
[CrossRef] [PubMed]

I. Ahmed, E. P. Li, and E. H. Khoo, “Interactions between magnetic and non-magnetic materials for plasmonics,” in International Conference on Materials and Advanced Technologies (Materials Research Society of Singapore, 2009).

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Ayubi-Moak, J. S.

K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
[CrossRef]

Brongersma, M. L.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophtonics (Springer, 2007).
[CrossRef]

Clerot, F.

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

Deveaud, B.

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Djurisic, A. B.

Elazar, J. M.

Fuliwara, K.

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

Geluk, E. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Hagness, S. C.

K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
[CrossRef]

Hill, M. T.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Ho, S. T.

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

Y. Huang and S. T. Ho, “Simulation of electrically-pumped nanophotonic lasers using dynamical semiconductor medium FDTD method,” in 2nd IEEE International Nanoelectronics Conference, (IEEE, 2008), pp. 202–205.
[CrossRef]

Y. Huang and S. T. Ho, “Computational model of solid state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006).
[CrossRef] [PubMed]

Huang, Y.

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

Y. Huang and S. T. Ho, “Simulation of electrically-pumped nanophotonic lasers using dynamical semiconductor medium FDTD method,” in 2nd IEEE International Nanoelectronics Conference, (IEEE, 2008), pp. 202–205.
[CrossRef]

Y. Huang and S. T. Ho, “Computational model of solid state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi-Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006).
[CrossRef] [PubMed]

Karouta, F.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Khoo, E. H.

I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
[CrossRef]

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett. 95, 121104–121106 (2009).
[CrossRef]

I. Ahmed, E. P. Li, and E. H. Khoo, “Interactions between magnetic and non-magnetic materials for plasmonics,” in International Conference on Materials and Advanced Technologies (Materials Research Society of Singapore, 2009).

Kik, P. G.

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophtonics (Springer, 2007).
[CrossRef]

Knezevic, I.

K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
[CrossRef]

Krasavin, A. V.

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonics integration with dielectric loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Leong, E. S. P.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Li, E. P.

I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
[CrossRef]

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett. 95, 121104–121106 (2009).
[CrossRef]

I. Ahmed, C. E. Png, E. P. Li, and R. Vahldieck, “Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure,” Opt. Express 17, 337–345 (2009).
[CrossRef] [PubMed]

I. Ahmed, E. P. Li, and E. H. Khoo, “Interactions between magnetic and non-magnetic materials for plasmonics,” in International Conference on Materials and Advanced Technologies (Materials Research Society of Singapore, 2009).

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

Majewski, M. L.

Marell, M.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Marrin, S.

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

Mitsunaga, K.

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

Mittra, R.

I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
[CrossRef]

Ning, C.-Z.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Nötzel, R.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Oei, Y.-S.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Png, C. E.

Rakic, D.

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
[CrossRef]

Smalbrugge, B.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Smit, M. K.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
[CrossRef]

Sun, M.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Vahldieck, R.

van Veldhoven, P. J.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Willis, K. J.

K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
[CrossRef]

Zayats, A. V.

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonics integration with dielectric loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
[CrossRef]

Zhu, Y.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. H. Khoo, I. Ahmed, and E. P. Li, “Enhancement of light energy extraction from elliptical microcavity using external magnetic field for switching applications,” Appl. Phys. Lett. 95, 121104–121106 (2009).
[CrossRef]

IEEE Antenn. Wireless Propag. Lett. (1)

I. Ahmed, E. H. Khoo, E. P. Li, and R. Mittra, “A hybrid approach for solving coupled Maxwell and Schrodinger equations arising in the simulation of nano-devices,” IEEE Antenn. Wireless Propag. Lett. 9, 914–917 (2010).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. Marrin, B. Deveaud, F. Clerot, K. Fuliwara, and K. Mitsunaga, “Capture of photoexcited carriers in a single quantum well with different confinement structures,” IEEE J. Quantum Electron. 27, 1669–1675 (1991).
[CrossRef]

E. H. Khoo, S. T. Ho, I. Ahmed, E. P. Li, and Y. Huang, “Light energy extraction from the minor surface arc of an electrically pumped elliptical microcavity laser,” IEEE J. Quantum Electron. 46, 128–136 (2010).
[CrossRef]

J. Comput. Electron. (1)

K. J. Willis, J. S. Ayubi-Moak, S. C. Hagness, and I. Knezevic, “Global modeling of carrier-field dynamics in semiconductor using EMC-FDTD,” J. Comput. Electron. 8, 153–171 (2009).
[CrossRef]

Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides (1)

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J.Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides ,” Opt. Express 17, 11107–11112 (2009).
[CrossRef]

Nano Lett. (1)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “Plas-MOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9, 897–902 (2009).
[CrossRef] [PubMed]

Nat. Photon. (1)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photon. 3, 55–58(2008).
[CrossRef]

Opt. Express (2)

Phys. Rev. B (1)

A. V. Krasavin and A. V. Zayats, “Three-dimensional numerical modeling of photonics integration with dielectric loaded SPP waveguides,” Phys. Rev. B 78, 045425 (2008).
[CrossRef]

Other (4)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer-Verlag, 2007).

M. L. Brongersma and P. G. Kik, Surface Plasmon Nanophtonics (Springer, 2007).
[CrossRef]

Y. Huang and S. T. Ho, “Simulation of electrically-pumped nanophotonic lasers using dynamical semiconductor medium FDTD method,” in 2nd IEEE International Nanoelectronics Conference, (IEEE, 2008), pp. 202–205.
[CrossRef]

I. Ahmed, E. P. Li, and E. H. Khoo, “Interactions between magnetic and non-magnetic materials for plasmonics,” in International Conference on Materials and Advanced Technologies (Materials Research Society of Singapore, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Discretization of the conduction and valence bands for a multilevel multielectron model of a direct band gap semiconductor for simulation with the FDTD method.

Fig. 2
Fig. 2

Semiconductor slab sandwiched between two parallel gold plates.

Fig. 3
Fig. 3

Snapshots of the electric field intensity for top, side, and front views of the MSM structure.

Fig. 4
Fig. 4

Electric field intensity with respect to time at different pumping densities.

Fig. 5
Fig. 5

Field intensity with respect to wavelength at different pumping intensities.

Fig. 6
Fig. 6

Total electric field intensity for an MSM waveguide measured at 1 μm away from the source. (a) Electric field with respect to the width of the slab, (b) electric field intensity with respect to the height of the slab.

Fig. 7
Fig. 7

Structure and results for a microcavity. (a) Three-dimensional view, (b) electric field distribution in the conventional microcavity, (c) electric field distribution in a microcavity with two cylindrical-shaped gold nanoparticles, (d) electric field distribution with four cylindrical-shaped gold nanoparticles embedded inside the microcavity.

Fig. 8
Fig. 8

Resonance wavelengths for a semiconductor microcavity with and without different combinations of gold nanoparticles.

Equations (44)

Equations on this page are rendered with MathJax. Learn more.

× H = D t ,
× E = B t ,
ϵ r ( ω ) = ϵ + ω p D 2 j 2 ω 2 + j Γ D ω + Δ ϵ L ω p L 2 j 2 ω 2 + j ω Γ L + ω L 2 ,
× H = j ϵ 0 ϵ ω E + ω p D 2 j 2 ω 2 + j Γ D ω j ω E + Δ ϵ L ω p L 2 j 2 ω 2 + j ω Γ L + ω L 2 j ω E .
× H = ϵ 0 ϵ E t + J D + ϵ 0 Q L t ,
ω p D 2 ϵ 0 E = J D t + J D Γ D ,
Δ ϵ L ω p L 2 E = 2 Q L t 2 + Γ L Q L t + ω L 2 Q L ,
E x t = 1 ϵ 0 ϵ ( H z y H y z ) 1 ϵ 0 ϵ J D x 1 ϵ Q L x t ,
E y t = 1 ϵ 0 ϵ ( H x z H z x ) 1 ϵ 0 ϵ J D y 1 ϵ Q L y t ,
E z t = 1 ϵ 0 ϵ ( H y x H x y ) 1 ϵ 0 ϵ J D z 1 ϵ Q L z t ,
H x t = 1 μ 0 μ r ( E y z E z y ) ,
H y t = 1 μ 0 μ r ( E z x E x z ) ,
H z t = 1 μ 0 μ r ( E x y E y x ) .
E x n + 1 = 1 Ω x E x n + Δ t Ω x ϵ 0 ϵ [ H z n + 1 2 y H y n + 1 2 z ] Δ t 2 Ω x ϵ 0 ϵ [ α x J D x n + β x E x n + J D x n ] 1 Ω x ϵ [ ς x E x n + τ x Q L x n ρ x Q L x n 1 Q L x n ] .
J D x n + 1 = α x J D x n + β x [ E x n + 1 + E x n ] ,
Q L x n + 1 = ς x ( E x n + 1 + E x n ) + τ x Q L x n ς x Q L x n 1 ,
α x = ( 1 Δ t Γ D 2 ) ( 1 + Δ t Γ D 2 ) , β x = Δ t ω p D 2 ϵ 0 2 ( 1 + Δ t Γ D 2 ) ,
ς x = Δ t 2 Δ ϵ L ω p L 2 2 ( 1 + Δ t Γ L + Δ t 2 2 ω L 2 ) , τ x = ( 2 + Δ t Γ L Δ t 2 2 ω L 2 ) ( 1 + Δ t Γ L + Δ t 2 2 ω L 2 ) ,
ρ x = 1 ( 1 + Δ t Γ L + Δ t 2 2 ω L 2 ) , Ω x = ( ς x ϵ + 1 + Δ t β x 2 ϵ 0 ϵ ) .
× H = ϵ 0 n 2 E t P t ,
P ( r , t ) = U m ( t ) N dip h ( r ) ,
Δ N h | i + 1 2 , j , k n = ω a h ( A x | i + 1 2 , j , k n . P h x | i + 1 2 , j , k n + A y | i + 1 2 , j , k n . P h y | i + 1 2 , j , k n + A z | i + 1 2 , j , k n . P h z | i + 1 2 , j , k n ) + N C ( h ) | i + 1 2 , j , k n ( 1 N v ( h ) | i + 1 2 , j , k n N v ( h ) | i + 1 2 , j , k ) τ h ,
Δ N C ( h , h 1 ) | i + 1 2 , j , k n = N C ( h ) | i + 1 2 , j , k n ( 1 N C ( h 1 ) | i + 1 2 , j , k n N C ( h 1 ) | i + 1 2 , j , k ) τ C ( h , h 1 ) N C ( h 1 ) | i + 1 2 , j , k n ( 1 N C ( h ) | i + 1 2 , j , k n N C ( h ) | i + 1 2 , j , k ) τ C ( h 1 , h ) ,
Δ N V ( h , h 1 ) | i + 1 2 , j , k n = N V ( h ) | i + 1 2 , j , k n ( 1 N V ( h 1 ) | i + 1 2 , j , k n N V ( h 1 ) | i + 1 2 , j , k ) τ V ( h , h 1 ) N V ( h 1 ) | i + 1 2 , j , k n ( 1 N V ( h ) | i + 1 2 , j , k n N V ( h ) | i + 1 2 , j , k ) τ V ( h 1 , h ) ,
d 2 P h k ( r , t ) d t 2 + Γ h d P h k ( r , t ) d t + [ ω a h + ( 2 ω a h ) 2 h 2 | U k h | 2 A k 2 ( r , t ) ] P h k ( r , t ) = 2 ω a h h | U k h | 2 [ N dip h ( r ) N V h 0 ( r ) N V h ( r , t ) N dip h ( r ) N C h 0 ( r ) N C h ( r , t ) ] E k ( r , t ) ,
P h x | i + 1 2 , j , k n + 1 = 4 2 Δ t 2 ( ω a h 2 + 4 ω a h 2 2 | U h | 2 A x 2 | i + 1 2 , j , k n ) 2 + Δ t . γ h P h x | i + 1 2 , j , k n + Δ t . γ h 2 2 + Δ t . γ h P h x | i + 1 2 , j , k n 1 4 Δ t 2 ω a h ( 2 + Δ t . γ h ) | U k h | 2 [ N C h | i + 1 2 , j , k n N V h | i + 1 2 , j , k n ] E x | i + 1 2 , j , k n ,
N C h | i + 1 2 , j , k n + 1 = N C h | i + 1 2 , j , k n 1 + 2 Δ t ( Δ N ( h ) | i + 1 2 , j , k n Δ N ( h , h 1 ) | i + 1 2 , j , k n + Δ N ( h + 1 , h ) | i + 1 2 , j , k n + W pump ) ,
N V h | i + 1 2 , j , k n + 1 = N V h | i + 1 2 , j , k n 1 + 2 Δ t ( Δ N ( h ) | i + 1 2 , j , k n Δ N ( h , h 1 ) | i + 1 2 , j , k n + Δ N ( h + 1 , h ) | i + 1 2 , j , k n W pump ) .
τ v ( h 1 , h ) τ v ( h , h 1 ) = N v ( h 1 ) ( r ) N v ( h ) ( r ) e ( E v ( h ) E v ( h 1 ) ) K B T ,
E x | i + 1 2 , j , k n + 1 = E x | i + 1 2 , j , k n + Δ t ϵ Δ y ( H z | i + 1 2 , j + 1 2 , k n + 1 2 H z | i + 1 2 , j 1 2 , k n + 1 2 ) + Δ t ϵ Δ z ( H y | i + 1 2 , j , k + 1 2 n + 1 2 H y | i + 1 2 , j , k 1 2 n + 1 2 ) 1 ϵ h = 1 M ( P h , x | i + 1 2 , j , k n + 1 P h , x | i + 1 2 , j , k n ) ,
E y | i , j + 1 2 , k n + 1 = E y | i , j + 1 2 , k n + Δ t ϵ Δ z ( H x | i , j + 1 2 , k + 1 2 n + 1 2 H x | i , j + 1 2 , k 1 2 n + 1 2 ) Δ t ϵ Δ x ( H z | i , j + 1 2 , k + 1 2 n + 1 2 H z | i , j + 1 2 , k 1 2 n + 1 2 ) 1 ϵ h = 1 M ( P h , y | i , j + 1 2 , k n + 1 P h , y | i , j + 1 2 , k n ) ,
E z | i , j , k + 1 2 n + 1 = E z | i , j , k + 1 2 n + Δ t ϵ Δ x ( H y | i + 1 2 , j , k + 1 2 n + 1 2 H y | i 1 2 , j , k + 1 2 n + 1 2 ) Δ t ϵ Δ y ( H x | i , j + 1 2 , k + 1 2 n + 1 2 H x | i , j 1 2 , k + 1 2 n + 1 2 ) 1 ϵ h = 1 M ( P h , z | i , j , k + 1 2 n + 1 P h , z | i , j , k + 1 2 n ) ,
D = ϵ 0 ϵ r E ,
D = ϵ 0 ( 1 + χ ) E ,
D = ϵ 0 E + ϵ 0 χ E ,
p = ϵ 0 χ E ,
D = ϵ 0 E + p ,
D = ϵ 0 E + ϵ 0 χ E + P ,
D = ϵ 0 ϵ r E + P .
D = ϵ 0 ( 1 + ϵ f + ϵ d + ϵ L ) E ,
D = ϵ 0 ( 1 + χ ) E , where χ = ϵ f + ϵ d + ϵ L ,
D = ϵ 0 E + ϵ 0 χ E ,
P = ϵ 0 χ E ,
D = ϵ 0 E + P .

Metrics