Abstract

We numerically study the dynamics of two-dimensional spatial solitons on the top of an external umbrella-shaped potential in the cubic-quintic complex Ginzburg-Landau model. Unique scenarios of the dynamics of dissipative spatial solitons interacting with this potential are put forward, such as generation of straight-lined arrays (or “jets”), emission of either one necklace-shaped soliton array or several such soliton arrays, soliton evolution into an oscillatory mode, and soliton spreading. In addition, by changing the number of lateral planes of the external potential, keeping fixed the other parameters of the potential, the various scenarios of soliton dynamics can transform into each other. These results suggest possible applications to signal routing in all-optical information processing devices.

© 2011 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription