Abstract

We present here a numerical study of an optical Fabry-Perot filter made within triangular symmetry 2D photonic crystal by using the finite difference time domain method. Devices that are structure based on microcavities have been studied using direct input and output coupling through channel waveguides including size-graded holes on both sides of the microcavitiy. From a transmission calculation, a very high-Q-factor value has been achieved at λ=1.50086μm.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light Princeton (University Press, 1995), pp. 94–104.
  2. C. M. Soukoulis, “3D photonic crystals: from microwaves to optical frequencies in photonic crystals and light localization,” in Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer, 2001), pp. 25–40.
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
    [CrossRef] [PubMed]
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000).
    [CrossRef]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
    [CrossRef]
  6. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
    [CrossRef] [PubMed]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
    [CrossRef] [PubMed]
  8. J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. 17, 1500–1508(1999).
    [CrossRef]
  9. M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
    [CrossRef]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
    [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
    [CrossRef]
  12. A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
    [CrossRef]
  13. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
    [CrossRef]
  14. S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
    [CrossRef]
  15. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, “Photonic band-structure and defects in one and 2 dimensions,” J. Opt. Soc. Am. B 10, 314–321 (1993).
    [CrossRef]
  16. O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999).
    [CrossRef]
  17. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
    [CrossRef]
  18. X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007).
    [CrossRef]
  19. J. Romero-Vivas, D. N. Chigrin, A. V. Lavrinenko, and C. M. Sotomayor Torres, “Resonant add-drop filter based on a photonic quasicrystal,” Opt. Express 13, 826–835 (2005).
    [CrossRef] [PubMed]
  20. Y. Desieres, “Conception et études optiques de composants micro photoniques sur matériaux III-V à base de structures à bande interdite de photon,” Ph.D. thesis No. 01-0081, National Institute of Applied Sciences in Lyon (2001).
  21. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).
  22. The FDTD simulations were carried out with Fullwave commercial software by RSoft Design Group, version 6.1, license 16847214.
  23. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joanopolous, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
    [CrossRef]
  24. K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004).
    [CrossRef] [PubMed]
  25. T. Xu, N. Zhu, M. Y-C. Xu, L. Wosinski, J. S. Aitchison, and H. E. Ruda, “Pillar-array based optical sensor,” Opt. Express 18, 5420–5425 (2010).
    [CrossRef] [PubMed]

2010 (1)

2007 (1)

X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007).
[CrossRef]

2005 (1)

2004 (1)

2001 (2)

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joanopolous, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
[CrossRef]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

2000 (3)

M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000).
[CrossRef]

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

1999 (6)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

J. Yonekura, M. Ikeda, and T. Baba, “Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,” J. Lightwave Technol. 17, 1500–1508(1999).
[CrossRef]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999).
[CrossRef]

1998 (1)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
[CrossRef] [PubMed]

1997 (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

1995 (1)

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

1993 (1)

Aitchison, J. S.

Akmansoy, A. E.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Baba, T.

Barclay, P. E.

Bayindir, M.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000).
[CrossRef]

Birks, T. A.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
[CrossRef] [PubMed]

Biswas, R.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

Brillat, T.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Broeng, J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
[CrossRef] [PubMed]

Cabaret, S.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Chigrin, D. N.

Chow, E.

Chutinan, A.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

Dalichaouch, R.

Dapkus, P. D.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999).
[CrossRef]

de Lustrac, A.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Desieres, Y.

Y. Desieres, “Conception et études optiques de composants micro photoniques sur matériaux III-V à base de structures à bande interdite de photon,” Ph.D. thesis No. 01-0081, National Institute of Applied Sciences in Lyon (2001).

Doll, T.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Fan, S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Gadot, F.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

Husain, A.

Ikeda, M.

Imada, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Joannapoulos, J. D.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Joannopoulos, J. D.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light Princeton (University Press, 1995), pp. 94–104.

Joanopolous, J. D.

Johnson, S. G.

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joanopolous, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
[CrossRef]

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999).
[CrossRef]

Kimberling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Knight, J. C.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
[CrossRef] [PubMed]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

Kroll, N.

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Lavrinenko, A. V.

Lee, R. K.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Lin, S. Y.

S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joanopolous, “Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,” Opt. Lett. 26, 1903–1905 (2001).
[CrossRef]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

Loncar, M.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Lourtioz, J. M.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Lu, N.

X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007).
[CrossRef]

McCall, S. L.

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light Princeton (University Press, 1995), pp. 94–104.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).

Mekis, A.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Mochizuki, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

Nedeljkovic, D.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Noda, S.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999).
[CrossRef]

Ozbay, E.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

Painter, O.

K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express 12, 1458–1463 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Painter, O. J.

Pearsall, T. P.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Platzman, P. M.

Priou, A.

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

Romero-Vivas, J.

Ruda, H. E.

Russell, P. S. J.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
[CrossRef] [PubMed]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

Scherer, A.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, “Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP,” J. Lightwave Technol. 17, 2082 (1999).
[CrossRef]

Schultz, S.

Sigalas, M.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

Smith, D. R.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Soukoulis, C. M.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

C. M. Soukoulis, “3D photonic crystals: from microwaves to optical frequencies in photonic crystals and light localization,” in Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer, 2001), pp. 25–40.

Srinivasan, K.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

Temelkuran, B.

M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

Torres, C. M. Sotomayor

Tuttle, G.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

Villeneuve, P. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Vuckovic, J.

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

Wang, X.

X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light Princeton (University Press, 1995), pp. 94–104.

Wosinski, L.

Xu, M. Y-C.

Xu, T.

Xu, Z.

X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Yokoyama, M.

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

Yonekura, J.

Zhu, N.

Appl. Phys. Lett. (4)

M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, “Waveguiding in planar photonic crystals,” Appl. Phys. Lett. 77, 1937–1939 (2000).
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Photonic crystal based beam splitters,” Appl. Phys. Lett. 77, 3902–3904 (2000).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370–1372 (1999).
[CrossRef]

A. de Lustrac, F. Gadot, S. Cabaret, J. M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, “Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,” Appl. Phys. Lett. 75, 1625–1627 (1999).
[CrossRef]

J. Lightwave Technol. (2)

J. Opt. Soc. Am. B (1)

Nature (London) (1)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, “Photonic-bandgap microcavities in optical waveguides,” Nature (London) 390, 143–145 (1997).
[CrossRef]

Opt. Commun. (1)

X. Wang, Z. Xu, and N. Lu, “Ultracompact refractive index sensor based on microcavity in the sandwiched photonic crystal waveguide structure,” Opt. Commun. (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, “Defect structures in a layer-by-layer photonic band gap structure,” Phys. Rev. B 51, 13961–13965 (1995).
[CrossRef]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, “Photonic band gap microcavity in three dimensions,” Phys. Rev. B 59, R15579 (1999) Rapid Communications.
[CrossRef]

M. Bayindir, B. Temelkuran, and E. Ozbay, “Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,” Phys. Rev. B 61, R11855–R11858 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77, 3787–3790(1996).
[CrossRef] [PubMed]

Science (3)

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476–1479(1998).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001).
[CrossRef] [PubMed]

Other (5)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light Princeton (University Press, 1995), pp. 94–104.

C. M. Soukoulis, “3D photonic crystals: from microwaves to optical frequencies in photonic crystals and light localization,” in Photonic Crystals and Light Localization in the 21st Century, C.M.Soukoulis, ed. (Kluwer, 2001), pp. 25–40.

Y. Desieres, “Conception et études optiques de composants micro photoniques sur matériaux III-V à base de structures à bande interdite de photon,” Ph.D. thesis No. 01-0081, National Institute of Applied Sciences in Lyon (2001).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light Princeton(University Press, 2007).

The FDTD simulations were carried out with Fullwave commercial software by RSoft Design Group, version 6.1, license 16847214.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layout of the filter based on 2D PC with a triangular lattice of air holes, with hole radius r = 0.45 a . The filter consists of waveguide 1, microcavity, and waveguide 2. The microcavity consists of two air holes ( s = 2 ).

Fig. 2
Fig. 2

Dispersions curves and bandgaps for TM and TE polarizations for the 2D lattice without defects.

Fig. 3
Fig. 3

(a) Frequency response of the microcavity formed by removing two adjacent air holes ( s = 2 ) inside the complete bandgap of a triangular lattice. The microcavity is separated from the input and output waveguides by two air holes, N = 2 , of the PC. (b) Fundamental mode at 1.5004 μm along a filter with two air holes, N = 2 , of the PC. (c) The intensity field distribution for the filter at resonant wavelength 1.5004 μm . The purple and green circles indicate air holes.

Fig. 4
Fig. 4

(a) Quality factor Q as a function of the cavity length (s). (b) Mode resonance wavelength as a function of s.

Fig. 5
Fig. 5

(a) Transmission responses for a cavity with two air holes (dashed-dotted line), a cavity with three air holes (dashed line), and a cavity with four air holes (solid line). (b) The relation of the Q factor and the number of air holes around the cavity, N = 2 , 3, and 4, respectively.

Fig. 6
Fig. 6

(a) Quality factor Q as a function of the single reduced size hole ( r / a ) for N = 3 . (b) Transmission responses for a cavity with single reduced size hole 0.34 a (dashed line) and 0.32 a (solid line) for N = 3 .

Fig. 7
Fig. 7

(a) Quality factor Q as a function of the single reduced size hole ( r / a ) for N = 4 . (b) Transmission responses for a cavity with single reduced size hole 0.2a (solid line) and 0.22a (dashed line) for N = 4 .

Fig. 8
Fig. 8

Hexagonal cavity with two size-graded holes while the remaining two are with constant lattice. The radius of the outer holes (A) are fixed at 0.2a and 0.22a. The radius of the holes (B) varies between 0.39a–0.42a.

Fig. 9
Fig. 9

Quality factor Q as a function of the second radius B of air hole ( r / a ) with the first one A is fixed at (a) 0.2a and (c) 0.22a. Transmission responses for a cavity with two graded air holes: (b) ( N = 4 , 0.41a, 0.2a) (dashed line) and ( N = 4 , 0.42a, 0.2a) (solid line) and (d) ( N = 4 , 0.41a, 0.22a) (dashed line) and ( N = 4 , 0.42a, 0.22a) (solid line).

Metrics