Abstract

A broadband Cr4+:YAG double-clad crystal fiber light source with a collimated output power of 3.15mW was demonstrated by using a bidirectional pump scheme. The bidirectional pump scheme increased the pumping efficiency and reduced the thermal problem along the fiber. Good agreement on the output power of the broadband fluorescence was achieved between experiment and theory, which showed a peak net gain coefficient of 0.03cm1 at the center wavelength near 1380nm. The 3dB bandwidth of 222nm with a Gaussian-like spectrum makes it eminently suitable for broadband interferometric technique to have low image cross talk. The calculated interference signal shows a 3dB width of 3.62μm with a cross talk smaller than 24dB for adjacent axial image pixels.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
    [CrossRef]
  3. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef] [PubMed]
  4. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
    [CrossRef] [PubMed]
  5. S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000).
    [CrossRef]
  6. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
    [CrossRef]
  7. B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
    [CrossRef]
  8. B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27, 1309–1311 (2002).
    [CrossRef]
  9. C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
    [CrossRef]
  10. A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
    [CrossRef]
  11. A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” J. Opt. Soc. Am. B 18, 1578–1586 (2001).
    [CrossRef]
  12. V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003).
    [CrossRef]
  13. D. Welford and M. A. Jaspan, “Single-frequency operation of a Cr:YAG laser from 1332 to 1554nm,” J. Opt. Soc. Am. B 21, 2137–2141 (2004).
    [CrossRef]
  14. A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002).
    [CrossRef]
  15. K. Y. Huang, K. Y. Hsu, and S. L. Huang, “Analysis of ultra-broadband amplified spontaneous emissions generated by Cr4+:YAG single and glass-clad crystal fibers,” J. Lightwave Technol. 26, 1632–1639 (2008).
    [CrossRef]
  16. J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
    [CrossRef]
  17. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149–15169 (2008).
    [CrossRef] [PubMed]
  18. R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408(2002).
    [CrossRef]
  19. G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
    [CrossRef]
  20. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991), p. 17.
  21. C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129–131 (2005).
    [CrossRef] [PubMed]

2008 (2)

2007 (1)

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

2005 (1)

2004 (1)

2003 (2)

V. L. Kalashnikov, E. Sorokin, S. Naumov, and I. T. Sorokina, “Spectral properties of the Kerr-lens mode-locked Cr4+:YAG laser,” J. Opt. Soc. Am. B 20, 2084–2092 (2003).
[CrossRef]

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

2002 (4)

2001 (1)

2000 (1)

1999 (2)

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

1997 (2)

1995 (2)

A. Sennaroglu, C. R. Pollock, and H. Nathel, “Efficient continuous-wave chromium-doped YAG laser,” J. Opt. Soc. Am. B 12, 930–937 (1995).
[CrossRef]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Apolonski, A.

Bass, M.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Beall, G. H.

Bizheva, K.

Boppart, S. A.

Borrelli, N. F.

Bourquin, S.

Cable, A.

Chang, T. Y.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, J. C.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129–131 (2005).
[CrossRef] [PubMed]

Chen, Y.

Chinn, S. R.

Chuang, C. Y.

Crunteanu, A.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

de Boer, J. F.

Drexler, W.

Eason, R. W.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gorczynska, I.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Grivas, C.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Hsu, K. Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, K. Y.

Huang, S. L.

Ippen, E. P.

Jaspan, M. A.

Jelinek, M.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

Jiang, J.

Kalashnikov, V. L.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Kao, F. J.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

Kärtner, F. X.

Knight, J. C.

Lai, C. C.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129–131 (2005).
[CrossRef] [PubMed]

Li, X. D.

Lim, J. H.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lin, Y. S.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129–131 (2005).
[CrossRef] [PubMed]

Lo, C. Y.

May-Smith, T. C.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

Milner, T. E.

Monterosso, V.

Morgner, U.

Nassif, N.

Nathel, H.

Naumov, S.

Nelson, J. S.

Park, B. H.

Pinckney, L. R.

Pitris, C.

Pollnau, M.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

Pollock, C. R.

Potsaid, B.

Povazay, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Russell, P. St. J.

Salathé, R. P.

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991), p. 17.

Samson, B. N.

Sattmann, H.

Scherzer, E.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seitz, P.

Sennaroglu, A.

Shepherd, D. P.

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

Shr, R. C.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

Sorokin, E.

Sorokina, I. T.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stryland, E. V.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Su, W. Z.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991), p. 17.

Tripathi, R.

Tsai, C. N.

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

Unterhuber, A.

van Gemert, M. J. C.

Vetterlein, M.

Wadsworth, W. J.

Wang, J.

Weichman, L.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Welford, D.

Xiao, G.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yang, S.

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

Yeh, P. S.

IEEE J. Quantum Electron. (2)

C. Grivas, D. P. Shepherd, T. C. May-Smith, R. W. Eason, M. Pollnau, A. Crunteanu, and M. Jelinek, “Performance of Ar+-milled Ti:sapphire rib waveguides as single transverse-mode broadband fluorescence sources,” IEEE J. Quantum Electron. 39, 501–507 (2003).
[CrossRef]

G. Xiao, J. H. Lim, S. Yang, E. V. Stryland, M. Bass, and L. Weichman, “Z-scan measurement of the ground and excited state absorption cross sections of Cr4+ in yttrium aluminum garnet,” IEEE J. Quantum Electron. 35, 1086–1091 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (1)

J. C. Chen, Y. S. Lin, C. N. Tsai, K. Y. Huang, C. C. Lai, W. Z. Su, R. C. Shr, F. J. Kao, T. Y. Chang, and S. L. Huang, “400nm-bandwidth emission from a Cr-doped glass fiber,” IEEE Photonics Technol. Lett. 19, 595–597 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (4)

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43–48 (1995).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S. Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Opt. Lett. 30, 129–131 (2005).
[CrossRef] [PubMed]

S. Bourquin, V. Monterosso, P. Seitz, and R. P. Salathé, “Video-rate optical low-coherence reflectometry based on a linear smart detector array,” Opt. Lett. 25, 102–104 (2000).
[CrossRef]

R. Tripathi, N. Nassif, J. S. Nelson, B. H. Park, and J. F. de Boer, “Spectral shaping for non-Gaussian source spectra in optical coherence tomography,” Opt. Lett. 27, 406–408(2002).
[CrossRef]

B. N. Samson, L. R. Pinckney, J. Wang, G. H. Beall, and N. F. Borrelli, “Nickel-doped nanocrystalline glass-ceramic fiber,” Opt. Lett. 27, 1309–1311 (2002).
[CrossRef]

B. Povazay, K. Bizheva, A. Unterhuber, B. Hermann, H. Sattmann, A. F. Fercher, W. Drexler, A. Apolonski, W. J. Wadsworth, J. C. Knight, P. St. J. Russell, M. Vetterlein, and E. Scherzer, “Submicrometer axial resolution optical coherence tomography,” Opt. Lett. 27, 1800–1802 (2002).
[CrossRef]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22, 934–936 (1997).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, “In vivo ultrahigh-resolution optical coherence tomography,” Opt. Lett. 24, 1221–1223 (1999).
[CrossRef]

Prog. Quantum Electron. (1)

A. Sennaroglu, “Broadly tunable Cr4+-doped solid-state lasers in the near infrared and visible,” Prog. Quantum Electron. 26, 287–352 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991), p. 17.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy level diagram of the Cr 4 + :YAG crystal. λ p and λ f , wavelengths of the pump and the fluorescence, respectively. N i , i = 0 , 1 , 5 , population densities at the respective energy levels.

Fig. 2
Fig. 2

Population inversion distribution using forward and bidirectional pump schemes.

Fig. 3
Fig. 3

Experimental setup of the bidirectionally pumped Cr 4 + :YAG DCF broadband light source. PBS, polarization beam splitter; P, polarizer; L1 and L2, aspheric lenses; M, mirror; LPF, long-wavelength pass filter with a cut-on wavelength of 1200 nm ; TFC, thin film coating [high-reflection (HR) at 1200 1600 nm , antireflection (AR) at 1064 nm ].

Fig. 4
Fig. 4

Propagation loss of the DCF. Inset, photo of the polished Cr 4 + :YAG DCF end face.

Fig. 5
Fig. 5

Net gain coefficient for the complete inversion and the half-inversion cases.

Fig. 6
Fig. 6

Output powers of various pump and coating schemes.

Fig. 7
Fig. 7

Output spectrum of the broadband light source. Inset, calculated interference signal H ( z ) .

Fig. 8
Fig. 8

Calculated and experimentally measured normalized power envelopes of the interference signal 20 · log [ H ( z ) ] . Squares, calculated image cross talks of the longitudinal pixels.

Tables (1)

Tables Icon

Table 1 Calculated Image Cross Talk Analysis on the Cr 4 + :YAG DCF-Based Light Source

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Ω = 2 π ( 1 sin θ c ) .
I f ± ( z , ν i ) = I f , co ± ( z , ν i ) + I f , ic ± ( z , ν i ) ,
d I f , co ± ( z , ν i ) d z = ± σ e ( ν i ) N 2 ( z ) { [ 1 σ esa f ( ν i ) σ e ( ν i ) ] I f , co ± ( z , ν i ) + M · 2 h ν i Δ ν } α pl , co f · I f , co ± ( z , ν i ) ,
d I f , ic ± ( z , ν i ) d z = α pl , ic f I f , ic ± ( z , ν i ) + r · σ e ( ν i ) N 2 ( z ) M 2 h ν i Δ ν ,
d I p ± ( z ) d z = [ σ a N 0 ( z ) + σ esa p N 2 ( z ) + α pl p ] I p ± ( z ) ,
N 2 ( z ) N T = I p ( z ) / I p sat 1 + I p ( z ) / I p sat + i I f , co ( z , ν i ) / I f sat ,
g ( z , ν i ) = [ σ e ( ν i ) σ esa f ( ν i ) ] N 2 ( z ) .
g net ( z , ν i ) = g ( z , ν i ) α pl , co f = [ σ e ( ν i ) σ esa f ( ν i ) ] N 2 ( z ) α f , co pl .

Metrics