Abstract

We report on pump-probe mode-mismatched photothermal lens experiments of metallic micro- and nanoparticle water solutions. We show that metallic colloids exhibit nonlinear absorption effects related to the forces that result from the interaction with the electromagnetic radiation. The colloids show a double peak Z-scan shape that is associated with the presence of attraction forces when irradiating at 400nm. We estimate the corresponding nonlinear absorption coefficients using a Fresnel diffraction approximation for the description of the signal.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).
  2. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
    [CrossRef]
  3. B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
    [CrossRef]
  4. T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
    [CrossRef] [PubMed]
  5. S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
    [CrossRef] [PubMed]
  6. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
    [CrossRef] [PubMed]
  7. W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology 14, R63–R73 (2003).
    [CrossRef] [PubMed]
  8. S. G. Penn, L. Hey, and M. J. Natanz, “Nanoparticles for bioanalysis,” Curr. Opin. Chem. Biol. 7, 609–615 (2003).
    [CrossRef] [PubMed]
  9. G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
    [CrossRef]
  10. Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
    [CrossRef]
  11. A. V. Brusnichkin, D. A. Nedosekin, M. A. Proskurnin, and V. P. Zharov, “Photothermal lens detection of gold nanoparticles: Theory and experiments,” Appl. Spectrosc. 61, 1191–1201 (2007).
    [CrossRef] [PubMed]
  12. E. Y. Hleb and D. O. Lapotko, “Photothermal properties of gold nanoparticle under exposure to high optical energy,” Nanotechnology 19, 355702 (2008).
    [CrossRef] [PubMed]
  13. C. Zhou, Tsung-Han Tsai, D. C. Adler, Hsiang-Chieh Lee, D. W. Cohen, A. Mondelblatt, Y. Wang, J. L. Connolly, and J. G. Fujimoto, “Photothermal optical coherence tomography in ex vivo human breast tissues using gold nanoshells,” Opt. Lett. 35, 700–702 (2010).
    [CrossRef] [PubMed]
  14. A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene,” Chem. Phys. 20, 259–264 (1977).
    [CrossRef]
  15. A. Marcano O., K. Williams, and N. Melikechi, “Measurement of two-photon absorption using the photo-thermal lens effect,” Opt. Commun. 281, 2598–2604 (2008).
    [CrossRef]
  16. B. Imangholi, M. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227, 337–341 (2003).
    [CrossRef]
  17. A. Marcano O., H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408–1413 (2006).
    [CrossRef]
  18. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875(2008).
    [CrossRef]
  19. R. Agayan, F. Gittes, R. Kopelman, and C. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41, 2318–2327(2002).
    [CrossRef] [PubMed]
  20. J. Arias-Gonzalez and M. Nieto-Vesperinas, “Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
    [CrossRef]
  21. M. Pelton, M. Liu, H. Y. Kim, G. Smith, P. Guyot-Sionnest, and N. F. Scherer, “Optical trapping and alignment of single gold nanorods by using plasmon resonances,” Opt. Lett. 31, 2075–2077 (2006).
    [CrossRef] [PubMed]
  22. K. Toussaint, M. Liu, J. Pesic, M. Guffey, P. Guyot-Sionnest, and N. Scherer, “Plasmon resonance-based optical trapping of single and multiple Au nanoparticles,” Opt. Express 15, 12017–12029(2007).
    [CrossRef] [PubMed]
  23. M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
    [CrossRef]
  24. A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurement using high repetition rate lasers: How to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
    [CrossRef] [PubMed]
  25. S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effect in mode-locked femtosecond Z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
    [CrossRef]
  26. A. Marcano O., C. Loper, and N. Melikechi, “Pump probe mode mismatched Z-scan,” J. Opt. Soc. Am. B 19, 119–124 (2002).
    [CrossRef]
  27. J. B. Thorne and D. Bobbitt, “Comparison of Beer’s law and thermal lens techniques for absorption measurements under conditions of high scattering backgrounds,” Appl. Spectrosc. 47, 360–365 (1993).
    [CrossRef]
  28. E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
    [CrossRef] [PubMed]
  29. J. Georges, “Advantages and limitations of thermal lens spectrometry over conventional spectrophotometry for absorbance measurement,” Talanta 48, 501–509 (1999).
    [CrossRef]
  30. A. Marcano O., J. Ojeda, and N. Melikechi, “Absorption spectra of dye solutions measured using a white-light thermal lens spectrophotometer,” Appl. Spectrosc. 60, 560–563 (2006).
    [CrossRef] [PubMed]
  31. J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
    [CrossRef]
  32. MesoGold, Nanoparticle Colloidal Gold, http://www.purestcolloids.com/MesoGold.pdf.
  33. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
    [CrossRef]
  34. C. P. Singh, K. S. Bindra, G. Bhalerao, and S. M. Oak, “Investigation of optical limiting in iron oxide nanoparticles,” Opt. Express 16, 8440–8450 (2008).
    [CrossRef] [PubMed]

2010 (1)

2009 (1)

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

2008 (4)

A. Marcano O., K. Williams, and N. Melikechi, “Measurement of two-photon absorption using the photo-thermal lens effect,” Opt. Commun. 281, 2598–2604 (2008).
[CrossRef]

E. Y. Hleb and D. O. Lapotko, “Photothermal properties of gold nanoparticle under exposure to high optical energy,” Nanotechnology 19, 355702 (2008).
[CrossRef] [PubMed]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875(2008).
[CrossRef]

C. P. Singh, K. S. Bindra, G. Bhalerao, and S. M. Oak, “Investigation of optical limiting in iron oxide nanoparticles,” Opt. Express 16, 8440–8450 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (4)

2005 (2)

A. Gnoli, L. Razzari, and M. Righini, “Z-scan measurement using high repetition rate lasers: How to manage thermal effects,” Opt. Express 13, 7976–7981 (2005).
[CrossRef] [PubMed]

E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
[CrossRef] [PubMed]

2003 (6)

J. Arias-Gonzalez and M. Nieto-Vesperinas, “Optical forces on small particles: Attractive and repulsive nature and plasmon-resonance conditions,” J. Opt. Soc. Am. A 20, 1201–1209 (2003).
[CrossRef]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology 14, R63–R73 (2003).
[CrossRef] [PubMed]

S. G. Penn, L. Hey, and M. J. Natanz, “Nanoparticles for bioanalysis,” Curr. Opin. Chem. Biol. 7, 609–615 (2003).
[CrossRef] [PubMed]

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

B. Imangholi, M. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227, 337–341 (2003).
[CrossRef]

2002 (5)

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

R. Agayan, F. Gittes, R. Kopelman, and C. Schmidt, “Optical trapping near resonance absorption,” Appl. Opt. 41, 2318–2327(2002).
[CrossRef] [PubMed]

S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effect in mode-locked femtosecond Z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[CrossRef]

A. Marcano O., C. Loper, and N. Melikechi, “Pump probe mode mismatched Z-scan,” J. Opt. Soc. Am. B 19, 119–124 (2002).
[CrossRef]

2000 (2)

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[CrossRef] [PubMed]

1999 (2)

J. Georges, “Advantages and limitations of thermal lens spectrometry over conventional spectrophotometry for absorbance measurement,” Talanta 48, 501–509 (1999).
[CrossRef]

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[CrossRef]

1993 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

1977 (1)

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene,” Chem. Phys. 20, 259–264 (1977).
[CrossRef]

1965 (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

Adler, D. C.

Agayan, R.

Arias-Gonzalez, J.

Aussenegg, F. R.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Bhalerao, G.

Bindra, K. S.

Bobbitt, D.

Boyer, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Brusnichkin, A. V.

Cabrera, H.

Catunda, T.

Choquet, D.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Cognet, L.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Cohen, D. W.

Connolly, J. L.

Cruz, R. A.

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875(2008).
[CrossRef]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875(2008).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Falconieri, M.

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[CrossRef]

Feldmann, J.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Felidj, N.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Franzl, T.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Fritzsche, W.

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology 14, R63–R73 (2003).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gaiduk, A.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Georges, J.

J. Georges, “Advantages and limitations of thermal lens spectrometry over conventional spectrophotometry for absorbance measurement,” Talanta 48, 501–509 (1999).
[CrossRef]

Gittes, F.

Gnoli, A.

Gordon, J. P.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

Guerra, M.

Guffey, M.

Guyot-Sionnest, P.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Hasselbeck, M.

B. Imangholi, M. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227, 337–341 (2003).
[CrossRef]

Hey, L.

S. G. Penn, L. Hey, and M. J. Natanz, “Nanoparticles for bioanalysis,” Curr. Opin. Chem. Biol. 7, 609–615 (2003).
[CrossRef] [PubMed]

Hibara, A.

E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
[CrossRef] [PubMed]

Hleb, E. Y.

E. Y. Hleb and D. O. Lapotko, “Photothermal properties of gold nanoparticle under exposure to high optical energy,” Nanotechnology 19, 355702 (2008).
[CrossRef] [PubMed]

Imangholi, B.

B. Imangholi, M. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227, 337–341 (2003).
[CrossRef]

Jacinto, C.

Khlebtsov, B.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
[CrossRef]

Khlebtsov, N.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
[CrossRef]

Kim, H. Y.

Kitamori, T.

E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
[CrossRef] [PubMed]

Klar, T. A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Kliger, D. S.

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene,” Chem. Phys. 20, 259–264 (1977).
[CrossRef]

Kopelman, R.

Kowarik, S.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Krenn, J. R.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Krens, S. F. G.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Kulzer, F.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Kürzinger, K.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Lamprecht, B.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Lapotko, D. O.

E. Y. Hleb and D. O. Lapotko, “Photothermal properties of gold nanoparticle under exposure to high optical energy,” Nanotechnology 19, 355702 (2008).
[CrossRef] [PubMed]

Lee, Hsiang-Chieh

Leite, R. C. C.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

Leitner, A.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Letsinger, R. L.

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Liu, M.

Loper, C.

Lounis, B.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Marcano O., A.

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875(2008).
[CrossRef]

McGee, S. B.

S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effect in mode-locked femtosecond Z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[CrossRef]

Melikechi, N.

A. Marcano O., K. Williams, and N. Melikechi, “Measurement of two-photon absorption using the photo-thermal lens effect,” Opt. Commun. 281, 2598–2604 (2008).
[CrossRef]

A. Marcano O., J. Ojeda, and N. Melikechi, “Absorption spectra of dye solutions measured using a white-light thermal lens spectrophotometer,” Appl. Spectrosc. 60, 560–563 (2006).
[CrossRef] [PubMed]

A. Marcano O., C. Loper, and N. Melikechi, “Pump probe mode mismatched Z-scan,” J. Opt. Soc. Am. B 19, 119–124 (2002).
[CrossRef]

S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effect in mode-locked femtosecond Z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[CrossRef]

Melnikov, A.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
[CrossRef]

Mian, S. M.

S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effect in mode-locked femtosecond Z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[CrossRef]

Mirkin, C. A.

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Mock, J. J.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[CrossRef] [PubMed]

Mondelblatt, A.

Moore, R. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

Natanz, M. J.

S. G. Penn, L. Hey, and M. J. Natanz, “Nanoparticles for bioanalysis,” Curr. Opin. Chem. Biol. 7, 609–615 (2003).
[CrossRef] [PubMed]

Nedosekin, D. A.

Nichtl, A.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Nieto-Vesperinas, M.

Oak, S. M.

Ojeda, J.

Orrit, M.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Paulo, Pedro M. R.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Pelton, M.

Penn, S. G.

S. G. Penn, L. Hey, and M. J. Natanz, “Nanoparticles for bioanalysis,” Curr. Opin. Chem. Biol. 7, 609–615 (2003).
[CrossRef] [PubMed]

Pesic, J.

Porto, S. P. S.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

Proskurnin, M. A.

Raschke, G.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Razzari, L.

Righini, M.

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Salerno, M.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Scherer, N.

Scherer, N. F.

Schider, G.

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Schmidt, C.

Schmidt, T.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Schultz, D. A.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[CrossRef] [PubMed]

Schultz, S.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[CrossRef] [PubMed]

Sheik-Bahae, M.

B. Imangholi, M. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227, 337–341 (2003).
[CrossRef]

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Singh, C. P.

Smith, D. R.

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[CrossRef] [PubMed]

Smith, G.

Sönnichsen, C.

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Spaink, H. P.

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Tamaki, E.

E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
[CrossRef] [PubMed]

Tamarat, P.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Tardin, C.

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Taton, T. A.

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology 14, R63–R73 (2003).
[CrossRef] [PubMed]

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Thorne, J. B.

Tokeshi, M.

E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
[CrossRef] [PubMed]

Toussaint, K.

Tsai, Tsung-Han

Tuchin, V.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
[CrossRef]

Twarowski, A. J.

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene,” Chem. Phys. 20, 259–264 (1977).
[CrossRef]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Wang, Y.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

Whinnery, J. R.

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

Williams, K.

A. Marcano O., K. Williams, and N. Melikechi, “Measurement of two-photon absorption using the photo-thermal lens effect,” Opt. Commun. 281, 2598–2604 (2008).
[CrossRef]

Zharov, V.

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
[CrossRef]

Zharov, V. P.

Zhou, C.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762–1764 (2002).
[CrossRef]

Appl. Spectrosc. (3)

Chem. Phys. (1)

A. J. Twarowski and D. S. Kliger, “Multiphoton absorption spectra using thermal blooming: II. Two-photon spectrum of benzene,” Chem. Phys. 20, 259–264 (1977).
[CrossRef]

Curr. Opin. Chem. Biol. (1)

S. G. Penn, L. Hey, and M. J. Natanz, “Nanoparticles for bioanalysis,” Curr. Opin. Chem. Biol. 7, 609–615 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitivity measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769(1990).
[CrossRef]

J. Appl. Phys. (1)

J. P. Gordon, R. C. C. Leite, R. S. Moore, S. P. S. Porto, and J. R. Whinnery, “Long‐transient effects in lasers with inserted liquid samples,” J. Appl. Phys. 36, 3–9 (1965).
[CrossRef]

J. Nanophotonics (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: A review,” J. Nanophotonics 2, 021875(2008).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Falconieri, “Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers,” J. Opt. A: Pure Appl. Opt. 1, 662–667 (1999).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. C (1)

Pedro M. R. Paulo, A. Gaiduk, F. Kulzer, S. F. G. Krens, H. P. Spaink, T. Schmidt, and M. Orrit, “Photothermal correlation spectroscopy of gold nanoparticles in solution,” J. Phys. Chem. C 113, 11451–11457 (2009).
[CrossRef]

Lab Chip (1)

E. Tamaki, A. Hibara, M. Tokeshi, and T. Kitamori, “Tunable thermal lens spectrometry utilizing micro-channel assisted thermal lens spectrometry,” Lab Chip 5, 129–131 (2005).
[CrossRef] [PubMed]

Nano Lett. (1)

G. Raschke, S. Kowarik, T. Franzl, C. Sönnichsen, T. A. Klar, J. Feldmann, A. Nichtl, and K. Kürzinger, “Biomolecular recognition based on single gold nanoparticle light scattering,” Nano Lett. 3, 935–938 (2003).
[CrossRef]

Nanotechnology (3)

W. Fritzsche and T. A. Taton, “Metal nanoparticles as labels for heterogeneous, chip-based DNA detection,” Nanotechnology 14, R63–R73 (2003).
[CrossRef] [PubMed]

B. Khlebtsov, V. Zharov, A. Melnikov, V. Tuchin, and N. Khlebtsov, “Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters,” Nanotechnology 17, 5167–5179(2006).
[CrossRef]

E. Y. Hleb and D. O. Lapotko, “Photothermal properties of gold nanoparticle under exposure to high optical energy,” Nanotechnology 19, 355702 (2008).
[CrossRef] [PubMed]

Opt. Commun. (3)

A. Marcano O., K. Williams, and N. Melikechi, “Measurement of two-photon absorption using the photo-thermal lens effect,” Opt. Commun. 281, 2598–2604 (2008).
[CrossRef]

B. Imangholi, M. Hasselbeck, and M. Sheik-Bahae, “Absorption spectra of wide-gap semiconductors in their transparency region,” Opt. Commun. 227, 337–341 (2003).
[CrossRef]

S. M. Mian, S. B. McGee, and N. Melikechi, “Experimental and theoretical investigation of thermal lensing effect in mode-locked femtosecond Z-scan experiments,” Opt. Commun. 207, 339–345 (2002).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Opto-Electron. Rev. (1)

M. Salerno, J. R. Krenn, B. Lamprecht, G. Schider, H. Ditlbacher, N. Felidj, A. Leitner, and F. R. Aussenegg, “Plasmon polaritons in metal nanostructures: the optoelectronic route to nanotechnology,” Opto-Electron. Rev. 10, 217–224 (2002).

Proc. Natl. Acad. Sci. USA (2)

S. Schultz, D. R. Smith, J. J. Mock, and D. A. Schultz, “Single-target molecule detection with nonbleaching multicolor optical immunolabels,” Proc. Natl. Acad. Sci. USA 97, 996–1001 (2000).
[CrossRef] [PubMed]

L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, and B. Lounis, “Single metallic nanoparticle imaging for protein detection in cells,” Proc. Natl. Acad. Sci. USA 100, 11350–11355(2003).
[CrossRef] [PubMed]

Science (1)

T. A. Taton, C. A. Mirkin, and R. L. Letsinger, “Scanometric DNA array detection with nanoparticle probes,” Science 289, 1757–1760 (2000).
[CrossRef] [PubMed]

Talanta (1)

J. Georges, “Advantages and limitations of thermal lens spectrometry over conventional spectrophotometry for absorbance measurement,” Talanta 48, 501–509 (1999).
[CrossRef]

Other (1)

MesoGold, Nanoparticle Colloidal Gold, http://www.purestcolloids.com/MesoGold.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Z-scan signal calculated using Eqs. (6) and parameters λ p = 632 nm , λ e = 400 nm , a p = a e = 0 , d = 100 cm , z p = 100 cm , z e = 1 cm , and D = 1.43 10 3 cm 2 / s , Φ 1 = 0.1 and Φ 2 = 0 for the solid line and Φ 1 = 0 and Φ 2 = 0.1 for the dashed line.

Fig. 2
Fig. 2

Experimental setup consisting of a 10 W Nd-Yag laser that pumps a Ti:sapphire 140 fs laser working at 800 nm , a second harmonic generator that produces 400 nm fs radiation, an He Ne laser, mirrors M 1 , M 2 , M 3 , M 4 , and M 5 , optical shutter (Sh), beamsplitter B 1 , a reference detector (Ref), lenses L 1 , L 2 , and L 3 , sample cell (S), wedge (W), interference filter (F), aperture (A), and signal detector (D).

Fig. 3
Fig. 3

Absorbance spectra of the iron oxide (left), silver (center), and gold (right) colloids.

Fig. 4
Fig. 4

(a) Z-scan of 10 PPM gold colloid measured using a 0.2 mm cell and 124 mW of 400 nm fs -radiation at 400 nm . The solid line is a fitting calculated using Eqs. (6) through (6f) and parameters: λ e = 400 nm , λ p = 632 nm , z e = 0.5 cm , z p = 4000 cm , a p = 0 , a e = 0 , d = 50 cm , D = 1.43 10 3 cm 2 / s , Φ 1 = 0.05 , and Φ 2 = 0 (b) Z-scan of iron oxide colloid at concentration of 0.5 μg / ml measured using a 0.2 mm cell and 20 mW of 400 nm radiation. The solid line is a fitting calculated using the parameters Φ 1 = 0.06 , and Φ 2 = 0.23 The rest of the parameters are as in 4a.

Fig. 5
Fig. 5

Open Z-scan experiments of the iron oxide sample of the previous experiment [see Fig. 4b]. The solid line is the prediction if considering a two-photon absorption process.

Fig. 6
Fig. 6

(a) Dried iron oxide sample in the presence of 45 mW of 400 nm fs laser radiation. (b) Dried samples in the absence of laser radiation.

Fig. 7
Fig. 7

Z scan of iron oxide colloid measured using a 0.2 mm path-length glass cell and different powers of 400 nm fs radiation as indicated. The solid line is a fitting of the experimental data using Eqs. (6) and parameters Φ 1 = 0.032 and Φ 2 = 0.034 for 10 mW data, Φ 1 = 0.065 and Φ 2 = 0.23 for 22 mW data, and Φ 1 = 0.17 and Φ 2 = 0.27 for 30 mW data. The rest of the parameters are as in Fig. 4a.

Fig. 8
Fig. 8

(a) Z scan of 40 nm silver colloid measured using a 1 mm path-length glass cell and 15 mW of 400 nm fs radiation. The solid line is a fitting of the experimental data using Eqs. (6) and parameters Φ 1 = 0.07 and Φ 2 = 0.32 . The rest of the parameters are as in Fig. 4a. (b) Z scan of gold colloid measured using a 1 mm path-length glass cell obtained and a pump power of 75 mW at 400 nm . The solid line is a fitting of the experimental data using Eqs. (6) and parameters Φ 1 = 0.04 and Φ 2 = 0.054 . The rest of the parameters are as in Fig. 4a.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E j ( r , z , t ) = E o j ( t ) [ 1 + ( z a j ) 2 / z j 2 ] 0.5 exp [ r 2 r j 2 ( z ) i π r 2 λ j R j ( z ) i arctg ( z a j z j ) ] ,
T ( r , z , t ) t D Δ T ( r , z , t ) = α I e ( r , z , t ) ρ C p ,
α ( r , t ) = α o + α 2 I e ( r , t ) .
T ( r , z , t ) = T o ( 1 + 2 t / t c ( z ) ) 1 1 exp [ 2 r 2 τ / r e 2 ( z ) ] τ d τ + T 2 ( 1 + 4 t / t c ( z ) ) 1 1 exp [ 4 r 2 τ / r e 2 ( z ) ] τ d τ ,
Δ Φ = 2 π λ p ( n T ) L [ T ( r , z , t ) T ( 0 , z , t ) ] ,
S ( z , t ) = Φ 1 arctg [ Ψ 1 ( z , t ) ] + Φ 2 arctg [ Ψ 2 ( z , t ) ] 1 + ( z a e ) 2 / z e 2 ,
Φ 1 = P e α o L ( d n / d T ) / ( 2 λ p κ ) ,
Φ 2 = P e 2 α 2 L ( d n / d T ) / ( 2 π λ p λ e z e κ f τ ) ,
Ψ 1 ( z , t ) = 4 m ( z ) ν ( z ) t / t c ( z ) [ 1 + 2 m ( z ) ] 2 + ν 2 ( z ) + [ 1 + 2 m ( z ) + ν ( z ) 2 ] 2 t / t c ( z ) ,
Ψ 2 ( z , t ) = 16 m ( z ) ν ( z ) t / t c ( z ) [ 1 + 4 m ( z ) ] 2 + ν 2 ( z ) + [ 1 + 4 m ( z ) + ν ( z ) 2 ] 4 t / t c ( z ) ,
m ( z ) = r p 2 ( z ) / r e 2 ( z ) ,
ν ( z ) = ( z a p ) / z p + ( z p / ( d z ) ) [ 1 + ( z a p ) 2 / z p 2 ] .
α 2 = ( π 2 λ e z e f τ P e · Φ 2 Φ 1 ) α o .

Metrics