Abstract

We present a new approach which allows one to insert a silica nanosphere with a single quantum dot into a high Q photonic crystal slab nanocavity with an asymmetric nanohole in the center. The high Q cavity is optimized by adjusting air holes around the L3-type cavity based on three-dimensional finite-difference time-domain simulation. High Q value of 48 700 in this asymmetric cavity is achieved. The performance of the cavity with an assumed silica sphere containing a single quantum dot in the nanohole is also discussed, in which the Q factor can reach 5×104 and modal volume V is 0.048μm3 (0.62(λ0/n)3). It is found that the electric field intensity in the nanohole is much stronger than the maximum electric field in the cavity without a nanohole. This makes it possible to locate the precise position of the quantum dot with respect to the cavity mode electric maximum. This system provides a good candidate for realizing a strong interaction between a quantum dot and cavity for the study of cavity quantum electrodynamics.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
    [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
    [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
    [CrossRef]
  4. Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
    [CrossRef]
  5. N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
    [CrossRef]
  6. M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
    [CrossRef]
  7. D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
    [CrossRef]
  8. S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
    [CrossRef]
  9. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007).
    [CrossRef]
  10. C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
    [CrossRef]
  11. J. Topol’ancik, S. Chakravarty, P. Bhattacharya, and S. Chakrabarti, “Electrically injected quantum-dot photonic crystal microcavity light sources,” Opt. Lett. 31, 232–234 (2006).
    [CrossRef] [PubMed]
  12. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
    [CrossRef]
  13. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
    [CrossRef] [PubMed]
  14. K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
    [CrossRef]
  15. P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
    [CrossRef]
  16. C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
    [CrossRef] [PubMed]
  17. T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
    [CrossRef] [PubMed]
  18. D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
    [CrossRef]
  19. A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
    [CrossRef]
  20. A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
    [CrossRef]
  21. M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
    [CrossRef] [PubMed]
  22. J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
    [CrossRef]
  23. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
    [CrossRef]
  24. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005).
    [CrossRef] [PubMed]
  25. Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of similar to 10(9),” J. Lightwave Technol. 26, 1532–1539 (2008).
    [CrossRef]
  26. Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
    [CrossRef] [PubMed]
  27. M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
    [CrossRef] [PubMed]
  28. I. RSoft Design Group, “Creating Uniform and Non-Uniform Grids,” in RSOFT CAD 8.2 user guide (RSoft Design Group Inc., 2010), pp. 115–120.
  29. A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
    [CrossRef]

2010 (1)

2009 (5)

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

2008 (6)

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of similar to 10(9),” J. Lightwave Technol. 26, 1532–1539 (2008).
[CrossRef]

2007 (3)

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

2006 (3)

J. Topol’ancik, S. Chakravarty, P. Bhattacharya, and S. Chakrabarti, “Electrically injected quantum-dot photonic crystal microcavity light sources,” Opt. Lett. 31, 232–234 (2006).
[CrossRef] [PubMed]

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
[CrossRef] [PubMed]

2005 (3)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005).
[CrossRef] [PubMed]

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

2004 (2)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Z. Y. Zhang and M. Qiu, “Small-volume waveguide-section high Q microcavities in 2D photonic crystal slabs,” Opt. Express 12, 3988–3995 (2004).
[CrossRef] [PubMed]

2003 (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

2001 (2)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Abram, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Adawi, A. M.

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

Aers, G. C.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Amann, M. C.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Anderson, D.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Arakawa, Y.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Asano, T.

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of similar to 10(9),” J. Lightwave Technol. 26, 1532–1539 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Atkinson, P.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Atlasov, K. A.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Avlasevich, Y.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Becher, C.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Bennett, A. J.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Bhattacharya, P.

Biasiol, G.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Bichler, M.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Chakrabarti, S.

Chakravarty, S.

Chalcraft, A. R. A.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Combri, S.

N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Dalacu, D.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Darbandi, M.

M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
[CrossRef] [PubMed]

De Rossi, A.

N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Dwir, B.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

Fang, J. Y.

M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
[CrossRef] [PubMed]

Felici, M.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Finley, J. J.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Forchel, A.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Fox, A. M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Frederick, S.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007).
[CrossRef]

Gallo, P.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Gayral, B.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

Gevaux, D. G.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Go¨pfert, S.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Griffiths, J.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

Hatami, F.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Hawrylak, P.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Heindel, T.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Ho¨fling, S.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Hofling, S.

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Hopkinson, M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Hu, E.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

Huggenberger, A.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Hurlimann, T.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Ishida, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Iwamoto, S.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Jones, G. A. C.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Kamp, M.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Kaniber, M.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Kapon, E.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Karlsson, K. F.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Kinkhabwala, A.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Kiraz, A.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Korkusinski, M.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Krauss, T. F.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Kumagai, N.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Kun, D.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Lam, S.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Lapointe, J.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Laucht, A.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Laurent, S.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Le Gratiet, L.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Lemaitre, A.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Levenson, A.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Lidzey, D. G.

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

Liu, H. Y.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Loncar, M.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Lu, W. G.

M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
[CrossRef] [PubMed]

Mabuchi, H.

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Masselink, W. T.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

McKinnon, W. R.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Meyer, R.

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Michler, P.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Moerner, W. E.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Mohan, A.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Mullen, K.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Nann, T.

M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
[CrossRef] [PubMed]

Noda, S.

Y. Tanaka, T. Asano, and S. Noda, “Design of photonic crystal nanocavity with Q-factor of similar to 10(9),” J. Lightwave Technol. 26, 1532–1539 (2008).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Nomura, M.

M. Nomura, K. Tanabe, S. Iwamoto, and Y. Arakawa, “High-Q design of semiconductor-based ultrasmall photonic crystal nanocavity,” Opt. Express 18, 8144–8150 (2010).
[CrossRef] [PubMed]

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

O’Brien, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Ota, Y.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Oulton, R.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Petroff, P. M.

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Poole, P. J.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Qiu, M.

Raineri, F.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Reimer, M. E.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Reitzenstein, S.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Ritchie, D. A.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Rivoire, K.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

Robert-Philip, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Rudra, A.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Sagnes, I.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Sahin, M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Sanvitto, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Schneider, C.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Schoenfeld, W. V.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Shields, A. J.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Shirane, M.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Skolnick, M. S.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express 13, 1202–1214(2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

Sorba, L.

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

Stevenson, R. M.

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

Strauss, M.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Su¨nner, T.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Sunner, T.

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Szymanski, D.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Tanabe, K.

Tanaka, Y.

Topol’ancik, J.

Tran, N.-V.-Q.

N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

Varoutsis, S.

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

Vuckovic, J.

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Weinmann, P.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Whittaker, D. M.

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

Wiener, D.

T. Sunner, C. Schneider, M. Strauss, A. Huggenberger, D. Wiener, S. Hofling, M. Kamp, and A. Forchel, “Scalable fabrication of optical resonators with embedded site-controlled quantum dots,” Opt. Lett. 33, 1759–1761 (2008).
[CrossRef] [PubMed]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

Williams, R. L.

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

Worschech, L.

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

Yorozu, S.

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

Zhang, L. D.

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

Zhang, Z. Y.

Appl. Phys. Lett. (8)

Y. Ota, M. Shirane, M. Nomura, N. Kumagai, S. Ishida, S. Iwamoto, S. Yorozu, and Y. Arakawa, “Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity,” Appl. Phys. Lett. 94, 033102 (2009).
[CrossRef]

D. G. Gevaux, A. J. Bennett, R. M. Stevenson, A. J. Shields, P. Atkinson, J. Griffiths, D. Anderson, G. A. C. Jones, and D. A. Ritchie, “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities,” Appl. Phys. Lett. 88, 131101 (2006).
[CrossRef]

S. Laurent, S. Varoutsis, L. Le Gratiet, A. Lemaitre, I. Sagnes, F. Raineri, A. Levenson, I. Robert-Philip, and I. Abram, “Indistinguishable single photons from a single-quantum dot in a two-dimensional photonic crystal cavity,” Appl. Phys. Lett. 87, 163107 (2005).
[CrossRef]

C. Schneider, M. Strauss, T. Sunner, A. Huggenberger, D. Wiener, S. Reitzenstein, M. Kamp, S. Hofling, and A. Forchel, “Lithographic alignment to site-controlled quantum dots for device integration,” Appl. Phys. Lett. 92, 183101 (2008).
[CrossRef]

K. Rivoire, A. Kinkhabwala, F. Hatami, W. T. Masselink, Y. Avlasevich, K. Mullen, W. E. Moerner, and J. Vuckovic, “Lithographic positioning of fluorescent molecules on high-Q photonic crystal cavities,” Appl. Phys. Lett. 95, 123113 (2009).
[CrossRef]

P. Gallo, M. Felici, B. Dwir, K. A. Atlasov, K. F. Karlsson, A. Rudra, A. Mohan, G. Biasiol, L. Sorba, and E. Kapon, “Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities,” Appl. Phys. Lett. 92, 263101 (2008).
[CrossRef]

A. Kiraz, P. Michler, C. Becher, B. Gayral, A. Imamoglu, L. D. Zhang, E. Hu, W. V. Schoenfeld, and P. M. Petroff, “Cavity-quantum electrodynamics using a single InAs quantum dot in a microdisk structure,” Appl. Phys. Lett. 78, 3932–3934(2001).
[CrossRef]

A. R. A. Chalcraft, S. Lam, D. O’Brien, T. F. Krauss, M. Sahin, D. Szymanski, D. Sanvitto, R. Oulton, M. S. Skolnick, A. M. Fox, D. M. Whittaker, H. Y. Liu, and M. Hopkinson, “Mode structure of the L3 photonic crystal cavity,” Appl. Phys. Lett. 90, 241117(2007).
[CrossRef]

J. Lightwave Technol. (1)

Langmuir (1)

M. Darbandi, W. G. Lu, J. Y. Fang, and T. Nann, “Silica encapsulation of hydrophobically ligated PbSe nanocrystals,” Langmuir 22, 4371–4375 (2006).
[CrossRef] [PubMed]

Laser Photonics Rev. (1)

D. Dalacu, M. E. Reimer, S. Frederick, D. Kun, J. Lapointe, P. J. Poole, G. C. Aers, R. L. Williams, W. R. McKinnon, M. Korkusinski, and P. Hawrylak, “Directed self-assembly of single quantum dots for telecommunication wavelength optical devices,” Laser Photonics Rev. 4, 283–299 (2009).
[CrossRef]

Nanotechnology (1)

C. Schneider, A. Huggenberger, T. Su¨nner, T. Heindel, M. Strauss, S. Go¨pfert, P. Weinmann, S. Reitzenstein, L. Worschech, M. Kamp, S. Ho¨fling, and A. Forchel, “Single site-controlled In(Ga)As/GaAs quantum dots: Growth, properties and device integration,” Nanotechnology 20, 434012 (2009).
[CrossRef] [PubMed]

Nat. Photon. (1)

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photon. 1, 449–458(2007).
[CrossRef]

Nature (London) (3)

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature (London) 432, 200–203 (2004).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature (London) 445, 896–899 (2007).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944–947 (2003).
[CrossRef]

New J. Phys. (1)

A. M. Adawi and D. G. Lidzey, “A design for an optical-nanocavity optimized for use with surface-bound light-emitting materials,” New J. Phys. 10, 065011 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (2)

N.-V.-Q. Tran, S. Combri, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009).
[CrossRef]

M. Kaniber, A. Laucht, T. Hurlimann, M. Bichler, R. Meyer, M. C. Amann, and J. J. Finley, “Highly efficient single-photon emission from single quantum dots within a two-dimensional photonic band-gap,” Phys. Rev. B 77, 073312 (2008).
[CrossRef]

Phys. Rev. E (1)

J. Vuckovic, M. Loncar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E 65, 016608 (2001).
[CrossRef]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987).
[CrossRef] [PubMed]

Science (1)

A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005).
[CrossRef] [PubMed]

Other (1)

I. RSoft Design Group, “Creating Uniform and Non-Uniform Grids,” in RSOFT CAD 8.2 user guide (RSoft Design Group Inc., 2010), pp. 115–120.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Schematic diagram of an L3-type nanocavity with a nanohole located at the center. The nanocavity is created by omitting three air holes in a line. To obtain a high Q factor cavity, holes at different positions marked A, C, and D i ( i = 1 , 2, 3) are tuned. The displacement of the different holes are denoted by d A , d C , d D i ( i = 1 , 2, 3). (b) Holes D i ( i = 1 , 2, 3) are shifted along x and z axes simultaneously by a distance of d, for outward directions, marked by “−” and inward directions, marked by “+”. (c) The cross section (XoY) of the defect cavity. The dashed line represents the center plane of the slab. A single quantum dot encapsulated with silica (yellow circle) is assumed to be trapped in the hole.

Fig. 2
Fig. 2

Band structure of the TE-like modes of a freestanding PhC slab calculated by a 3D plane wave expansion method. The solid line represents the light line while the red shaded area represents the photonic bandgap.

Fig. 3
Fig. 3

The defined three Q factor components obtained by measuring the ratio of stored energy to leaking power.

Fig. 4
Fig. 4

(a) Q sum and the resonant wavelength versus the depth of the nanohole in the center. The blue arrow indicates the cavity with h = 106 nm , corresponding to the half-height of the slab. (b) Q / / versus the depth of the nanohole in the center. (c) Q up and Q down versus the depth of the nanohole in the center.

Fig. 5
Fig. 5

Electric field ( E z ) distribution of a nontuned cavity with a nanohole (a) in the central plane (XoZ) of the slab and (b) in the cross section (XoY). The depth of the cavity is 134 nm and the Q sum factor is 3540. (c) Magnified electric field ( E z ) distribution near the hole of a series of cavities with different depth of the nanohole at their resonant wavelength, as the rectangular area indicated in (b). (d) Electric field ( E x ) distribution of an untuned cavity with a nanohole in the central plane (XoZ).

Fig. 6
Fig. 6

Calculated electric field E z distribution for the first finer grid resolution ( Δ x = Δ z = 0.0125 a , Δ y = 0.05 a ) and the third grid resolution ( Δ x = Δ z = 0.025 a , Δ y = 0.075 a ). (a) Electric field distribution ( E z ) along the central face (XoY). (b) Electric field distribution ( E z ) in the cross section (XoZ).

Fig. 7
Fig. 7

Q / / , Q ver , and resonant wavelength of cavities with a range of displacement of D 1 holes based on the cavity M0 with d A = 0.185 a , r A = 0.223 a , and d C = 0.2 a . Here, 1 / Q ver = 1 / Q up + 1 / Q down .

Fig. 8
Fig. 8

Q sum of cavities with displacement of holes D 1 , D 2 , and D 3 in four kinds of cavities M0, M1, M12, and M123. Based on the optimized cavity M0 with holes A and C of d A = 0.185 a , r A = 0.223 a , d C = 0.2 a , cavity M1 denotes the cavity with the displacement of d D 1 = d and d D 2 = d D 3 = 0 , while cavity M12 indicates the cavity with the displacement of d D 1 = d D 2 = d , d D 3 = 0 , and cavity M123 represents the cavity with the displacement of d D 1 = d D 2 = d D 3 = d . The black (upper) line represents the shift of d = 0.018 a while the red (lower) line represents the shift of d = 0.025 a .

Fig. 9
Fig. 9

Momentum space intensity distribution of the mode in cavity M0 with d A = 0.185 a , r A = 0.223 a , d C = 0.2 a (a) and the cavity M12 with d A = 0.185 a , r A = 0.223 a , d C = 0.2 a , d D 1 = d D 2 = d = 0.025 a (b) Dashed white circles indicate the light cones. (c),(d) FT spectra for M0 and M12 cavities along k x (c) and k z (d) axes. The solid black lines represent M12 cavity while the dotted red lines represent M0 cavity. The dashed blue lines indicate the leaky regions. The FT spectra have been normalized to their maximum.

Fig. 10
Fig. 10

Performance of the cavity M123 with a silica sphere in the center ( M 123 silica ). The diameter of the silica sphere is 40 nm and the optimized displacement is d A = 0.185 a , r A = 0.223 a , d C = 0.2 a , d D 1 = d D 2 = d D 3 = d = 0.018 a . (a) Electric field distribution ( E z ) along the central face (XoZ). (b) Electric field distribution ( E z ) in the cross section (XoY). (c) Electric field distribution ( E z ) in the cross section (YoZ). (d) E z profile at the center line of the cavity M 123 silica (black solid line) and the cavity without a nanohole in the center marked with M nohole (red solid line). Inset, peak field profile in detail. The boundary of the nanohole with diameter of 40 nm is represented by the dark blue dashed line. The electric field at the boundary of the nanohole is represented by the green dashed horizontal line. (e) 2D FT spectra of E z profile for cavity M 123 silica .

Tables (2)

Tables Icon

Table 1 Q Factor and Resonant Wavelength of the Nanocavity in Which the Depth of Hole Is 106 nm with Three Different Grid Resolutions

Tables Icon

Table 2 Table 2 Performance of the Cavity under Various Tunings a

Metrics