Abstract

We show that a recently discussed apparatus for aberration-canceled interferometry may be modified to perform correlated-photon imaging in the so-called “ghost” imaging configuration. For objects in the vicinity of a particular plane, the images are free of object-induced phase distortions. This apparatus has the distinctive feature that it may be used to superimpose images of two objects in a manner that could lead to useful effects and applications. We show that the apparatus works using either quantum-entangled or classically correlated light sources.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
    [CrossRef] [PubMed]
  2. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
    [CrossRef] [PubMed]
  3. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
    [CrossRef] [PubMed]
  4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
    [CrossRef]
  5. Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
    [CrossRef]
  6. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
    [CrossRef] [PubMed]
  7. G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?,” Phys. Rev. Lett. 96, 063602 (2006).
    [CrossRef] [PubMed]
  8. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
    [CrossRef] [PubMed]
  9. D. Zhang, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
    [CrossRef] [PubMed]
  10. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [CrossRef] [PubMed]
  11. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
    [CrossRef] [PubMed]
  12. O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
    [CrossRef] [PubMed]
  13. C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
    [CrossRef] [PubMed]
  14. C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
    [CrossRef]
  15. D. S. Simon and A. V. Sergienko, “Spatial-dispersion cancellation in quantum interferometry,” Phys. Rev. A 80, 053813 (2009).
    [CrossRef]
  16. L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
    [CrossRef]
  17. J. A. Pedersen and M. A. Swartz, “Mechanobiology in the third dimension,” Ann. Biomed. Eng. 33, 1469–1490(2005).
    [CrossRef] [PubMed]
  18. P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanism,” Nat. Rev. Cancer 3, 362–374(2003).
    [CrossRef] [PubMed]
  19. P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
    [PubMed]
  20. J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
    [CrossRef] [PubMed]
  21. J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
    [CrossRef] [PubMed]
  22. K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
    [CrossRef] [PubMed]
  23. S. Mair, B. Gompf, and M. Dressel, “Microspectroscopy and imaging in the THz range using CW radiation,” Phys. Med. Biol. 47, 3719–3725 (2002).
    [CrossRef] [PubMed]
  24. E. Verhagen, A. L. Tchebotareva, and A. Polman, “Erbium luminescence imaging of infrared surface plasmon polaritons,” Appl. Phys. Lett. 88, 121121 (2006).
    [CrossRef]
  25. M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
    [CrossRef] [PubMed]

2010 (1)

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

2009 (3)

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
[CrossRef]

D. S. Simon and A. V. Sergienko, “Spatial-dispersion cancellation in quantum interferometry,” Phys. Rev. A 80, 053813 (2009).
[CrossRef]

2008 (1)

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

2006 (3)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

E. Verhagen, A. L. Tchebotareva, and A. Polman, “Erbium luminescence imaging of infrared surface plasmon polaritons,” Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?,” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef] [PubMed]

2005 (5)

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

D. Zhang, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354–2356 (2005).
[CrossRef] [PubMed]

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

J. A. Pedersen and M. A. Swartz, “Mechanobiology in the third dimension,” Ann. Biomed. Eng. 33, 1469–1490(2005).
[CrossRef] [PubMed]

2004 (2)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
[CrossRef]

2003 (1)

P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanism,” Nat. Rev. Cancer 3, 362–374(2003).
[CrossRef] [PubMed]

2002 (2)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

S. Mair, B. Gompf, and M. Dressel, “Microspectroscopy and imaging in the THz range using CW radiation,” Phys. Med. Biol. 47, 3719–3725 (2002).
[CrossRef] [PubMed]

1997 (1)

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

1995 (1)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

1994 (1)

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
[CrossRef] [PubMed]

1992 (2)

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

1985 (2)

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
[CrossRef] [PubMed]

Baas, F.

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Berardi, V.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?,” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef] [PubMed]

Bonato, C.

C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
[CrossRef]

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

Bonora, S.

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

Boyd, R. W.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
[CrossRef]

Cai, Y. J.

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

Chiao, R. Y.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

de Vijlderi, J. J. M.

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

Dressel, M.

S. Mair, B. Gompf, and M. Dressel, “Microspectroscopy and imaging in the THz range using CW radiation,” Phys. Med. Biol. 47, 3719–3725 (2002).
[CrossRef] [PubMed]

Fabry, B.

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

Ferri, F.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

Friedl, P.

P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanism,” Nat. Rev. Cancer 3, 362–374(2003).
[CrossRef] [PubMed]

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

Gatti, A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
[CrossRef]

Gompf, B.

S. Mair, B. Gompf, and M. Dressel, “Microspectroscopy and imaging in the THz range using CW radiation,” Phys. Med. Biol. 47, 3719–3725 (2002).
[CrossRef] [PubMed]

Howell, J. C.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

Jansen in de Wal, N.

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
[CrossRef] [PubMed]

Jawerth, L. M.

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

Jeong, K.-H.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Kim, J.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Klein, C. E.

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

Klyshko, D. N.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
[CrossRef] [PubMed]

Krohne, G.

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

Kwiat, P. G.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Landegent, J. E.

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
[CrossRef] [PubMed]

Lee, L. P.

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Lugiato, L. A.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
[CrossRef]

Maaser, K.

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

Magatti, D.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

Mair, S.

S. Mair, B. Gompf, and M. Dressel, “Microspectroscopy and imaging in the THz range using CW radiation,” Phys. Med. Biol. 47, 3719–3725 (2002).
[CrossRef] [PubMed]

Minaeva, O.

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

Münster, S.

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

Niggemann, B.

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

Pedersen, J. A.

J. A. Pedersen and M. A. Swartz, “Mechanobiology in the third dimension,” Ann. Biomed. Eng. 33, 1469–1490(2005).
[CrossRef] [PubMed]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Ploem, J. S.

J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
[CrossRef] [PubMed]

Polman, A.

E. Verhagen, A. L. Tchebotareva, and A. Polman, “Erbium luminescence imaging of infrared surface plasmon polaritons,” Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

Rubin, M. H.

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
[CrossRef] [PubMed]

Saleh, B. E. A.

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

Scarcelli, G.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?,” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

Sergienko, A. V.

C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
[CrossRef]

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

D. S. Simon and A. V. Sergienko, “Spatial-dispersion cancellation in quantum interferometry,” Phys. Rev. A 80, 053813 (2009).
[CrossRef]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
[CrossRef] [PubMed]

Shih, Y. H.

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?,” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef] [PubMed]

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
[CrossRef] [PubMed]

Simon, D. S.

C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
[CrossRef]

D. S. Simon and A. V. Sergienko, “Spatial-dispersion cancellation in quantum interferometry,” Phys. Rev. A 80, 053813 (2009).
[CrossRef]

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

Steinberg, A. M.

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Swartz, M. A.

J. A. Pedersen and M. A. Swartz, “Mechanobiology in the third dimension,” Ann. Biomed. Eng. 33, 1469–1490(2005).
[CrossRef] [PubMed]

Tchebotareva, A. L.

E. Verhagen, A. L. Tchebotareva, and A. Polman, “Erbium luminescence imaging of infrared surface plasmon polaritons,” Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

Vader, D. A.

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

van der Ploeg, M.

J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
[CrossRef] [PubMed]

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

van Duijn, P.

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

van Omment, G.-J. B.

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, A. L. Tchebotareva, and A. Polman, “Erbium luminescence imaging of infrared surface plasmon polaritons,” Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

Villoresi, P.

C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
[CrossRef]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

Weitz, D. A.

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

Wolf, K.

P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanism,” Nat. Rev. Cancer 3, 362–374(2003).
[CrossRef] [PubMed]

Zänker, K. S.

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

Zhang, D.

Zhu, S. Y.

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

Ann. Biomed. Eng. (1)

J. A. Pedersen and M. A. Swartz, “Mechanobiology in the third dimension,” Ann. Biomed. Eng. 33, 1469–1490(2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

E. Verhagen, A. L. Tchebotareva, and A. Polman, “Erbium luminescence imaging of infrared surface plasmon polaritons,” Appl. Phys. Lett. 88, 121121 (2006).
[CrossRef]

Biophys. J. (1)

L. M. Jawerth, S. Münster, D. A. Vader, B. Fabry, and D. A. Weitz, “A blind spot in confocal reflection microscopy,” Biophys. J. 98, L01–L03 (2010).
[CrossRef]

Cancer Res. (1)

P. Friedl, K. Maaser, C. E. Klein, B. Niggemann, G. Krohne, and K. S. Zänker, “Migration of highly invasive MV3 melanoma cells in collagen lattices causes local matrix reorganization of α2 and β1 integrins and CD44,” Cancer Res. 57, 2061–2070 (1997).
[PubMed]

J. Histochem. Cytochem. (1)

J. E. Landegent, N. Jansen in de Wal, and J. S. Ploem, M. van der Ploeg, “Sensitive detection of hybridocytochemical results by means of reflection-contrast microscopy,” J. Histochem. Cytochem. 33, 1241–1246 (1985).
[CrossRef] [PubMed]

Nat. Rev. Cancer (1)

P. Friedl and K. Wolf, “Tumour-cell invasion and migration: diversity and escape mechanism,” Nat. Rev. Cancer 3, 362–374(2003).
[CrossRef] [PubMed]

Nature (1)

J. E. Landegent, N. Jansen in de Wal, G.-J. B. van Omment, F. Baas, J. J. M. de Vijlderi, P. van Duijn, and M. van der Ploeg, “Chromosomal localization of a unique gene by non-autoradiographic in situ hybridization,” Nature 317, 175–177(1985).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

S. Mair, B. Gompf, and M. Dressel, “Microspectroscopy and imaging in the THz range using CW radiation,” Phys. Med. Biol. 47, 3719–3725 (2002).
[CrossRef] [PubMed]

Phys. Rev. A (6)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802(2004).
[CrossRef]

M. H. Rubin, D. N. Klyshko, Y. H. Shih, and A. V. Sergienko, “Theory of two-photon entanglement in type-II optical parametric down-conversion,” Phys. Rev. A 50, 5122–5133(1994).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A 52, R3429–R3432 (1995).
[CrossRef] [PubMed]

C. Bonato, D. S. Simon, P. Villoresi, and A. V. Sergienko, “Multiparameter entangled-state engineering using adaptive optics,” Phys. Rev. A 79, 062304 (2009).
[CrossRef]

D. S. Simon and A. V. Sergienko, “Spatial-dispersion cancellation in quantum interferometry,” Phys. Rev. A 80, 053813 (2009).
[CrossRef]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

Phys. Rev. E (1)

Y. J. Cai and S. Y. Zhu, “Ghost imaging with incoherent and partially coherent light radiation,” Phys. Rev. E 71, 056607 (2005).
[CrossRef]

Phys. Rev. Lett. (8)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. H. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005).
[CrossRef] [PubMed]

G. Scarcelli, V. Berardi, and Y. H. Shih, “Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?,” Phys. Rev. Lett. 96, 063602 (2006).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602(2005).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

O. Minaeva, C. Bonato, B. E. A. Saleh, D. S. Simon, and A. V. Sergienko, “Odd- and even-order dispersion cancellation in quantum interferometry,” Phys. Rev. Lett. 102, 100504(2009).
[CrossRef] [PubMed]

C. Bonato, A. V. Sergienko, B. E. A. Saleh, S. Bonora, and P. Villoresi, “Even-order aberration cancellation in quantum interferometry,” Phys. Rev. Lett. 101, 233603 (2008).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004).
[CrossRef] [PubMed]

Science (1)

K.-H. Jeong, J. Kim, and L. P. Lee, “Biologically inspired artificial compound eyes,” Science 312, 557–561 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic depiction of correlated-photon imaging setup. The photons in the two arms have anticorrelated transverse momenta ± q .

Fig. 2
Fig. 2

Schematic of interferometer with even-order aberration cancellation. Large bucket detectors D 1 and D 2 are integrated over and connected by a coincidence circuit.

Fig. 3
Fig. 3

Schematic of correlated-photon imaging setup with aberration cancellation. All orders of aberration cancel.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Φ ( q , ν ) = sinc [ L Δ ( q , ν ) 2 ] e i L Δ ( q , ν ) 2 ,
Δ ( q , ν ) = ν D + M e 2 ^ · q + 2 | q | 2 k pump .
| Ψ = d 2 q d ν Φ ( q , ν ) × a ^ s ( q , Ω 0 + ν ) a ^ i ( q , Ω 0 ν ) | 0 ,
R ( τ ) = R 0 [ 1 Λ ( 1 2 τ D L ) W ( τ ) ] ,
Λ ( x ) = { 1 | x | , | x | 1 0 , | x | > 1 .
R 0 = d 2 q | G 1 ( f q k ) G 2 ( f q k ) | 2 ,
W ( τ ) = 1 R 0 d 2 q e 2 i M τ D e 2 · q × G 1 * ( f q k ) G 1 ( f q k ) × G 2 * ( f q k ) G 2 ( f q k ) ,
t 1 * ( f q k ) t 1 ( f q k ) e i [ ( ϕ 1 f q k ) ϕ 1 ( f q k ) ] .
R ( x 1 ) = d 2 x 2 d t 1 d t 2 | A ( x 1 , x 2 , t 1 , t 2 ) | 2 ,
A ( x 1 , x 2 , t 1 , t 2 ) = 0 | E 1 ( + ) ( x 1 , t 1 ) E 2 ( + ) ( x 2 , t 2 ) | Ψ .
R ( x 1 ) = { [ B ( x 1 ) + B ( x 1 ) ] + [ C ( x 1 ) + C * ( x 1 ) ] } × | G 1 ( f f D x 1 ) G 2 ( f f D x 1 ) | 2 ,
B ( x 1 ) = d ν | Φ ( k x 1 f D , ν ) | 2 ,
C ( x 1 ) = d ν Φ ( k x 1 f D , ν ) Φ * ( k x 1 f D , ν ) .
R ( x 1 ) = R 0 | G 1 ( f f D x 1 ) G 2 ( f f D x 1 ) | 2 .
R ( r ) = R 0 | G 1 ( f f D ( x 1 + r ) ) G 2 ( f f D x 1 ) | 2 d x 1 .
| Ψ = 1 2 d 2 q F ( q ) [ a ^ 1 ( q ) + a ^ 2 ( q ) ] × [ a ^ 1 ( q ) + a ^ 2 ( q ) ] | 0
= d 2 q F ( q ) [ a ^ 1 ( q ) a ^ 2 ( q ) + ] | 0 ,
d 2 q F ( q ) e i q · ( x 1 x 2 ) H 1 ( q , x 1 ) H 2 ( q , x 2 ) ,
R ( x 1 ) = | F ( k f D x 1 ) G 1 ( f f D x 1 ) G 2 ( f f D x 1 ) | 2 .
H j ( q j , x j ) = G j ( f q j k ) e i q · x j ,
H j ( q j , x j ) = e i k x j 2 2 f D ( d 2 f D 1 ) e i d 1 q j 2 2 k × G j ( f q j k ) δ ( k x j f D q j ) ,

Metrics