Abstract

Two types of radially symmetric three-dimensional nonlinear photonic crystals with the cylindrical structure and the egglike structure are proposed, from which the conical and the spherical quadratic harmonic waves can be produced, respectively, by three-dimensional quasi-phase matching. First, the cylindrical structures with periodic and aperiodic modulations of the nonlinear coefficient are both studied, showing their significant advantages compared to the corresponding two-dimensional structures. The dependencies of the transverse and the longitudinal phase-matching periods on harmonic propagating directions are also calculated and analyzed. Then, the egglike structure is designed by programming and the distribution of reciprocal vectors is presented, indicating its ability to generate the spherical harmonic as a point light source. The investigation of the intensity distribution on the spherical wavefront is also performed, showing its strong dependence on the harmonic polarization and the quadratic nonlinear coefficients.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  2. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
    [CrossRef]
  3. S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
    [CrossRef]
  4. Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
    [CrossRef] [PubMed]
  5. Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
    [CrossRef] [PubMed]
  6. Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
    [CrossRef]
  7. R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
    [CrossRef]
  8. A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
    [CrossRef] [PubMed]
  9. P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008).
    [CrossRef]
  10. P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
    [CrossRef]
  11. A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
    [CrossRef]
  12. M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
    [CrossRef]
  13. Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
    [CrossRef]
  14. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
    [CrossRef] [PubMed]
  15. S. Saltiel, W. Krolikowski, D. Neshev, and Y. S. Kivshar, “Generation of Bessel beams by parametric frequency doubling in annular nonlinear periodic structures,” Opt. Express 15, 4132–4138 (2007).
    [CrossRef] [PubMed]
  16. S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
    [CrossRef] [PubMed]
  17. S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
    [CrossRef] [PubMed]
  18. D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, “Annular symmetry nonlinear frequency converters,” Opt. Express 14, 9371–9376 (2006).
    [CrossRef] [PubMed]
  19. J. J. Chen and X. F. Chen, “Phase matching in three-dimensional nonlinear photonic crystals,” Phys. Rev. A 80, 013801(2009).
    [CrossRef]
  20. I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
    [CrossRef]
  21. C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
    [CrossRef]
  22. S. Fahy and R. Merlin, “Reversal of ferroelectric domains by ultrashort optical pulses,” Phys. Rev. Lett. 73, 1122–1125 (1994).
    [CrossRef] [PubMed]
  23. H. S. Zhu, X. F. Chen, H. Y. Chen, and X. W. Deng, “Formation of domain reversal by direct irradiation with femtosecond laser in lithium niobate,” Chin. Opt. Lett. 7, 169–172 (2009).
    [CrossRef]
  24. H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009).
    [CrossRef]
  25. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion-equation for congruently grown lithium-niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
    [CrossRef]
  26. S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
    [CrossRef] [PubMed]
  27. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
    [CrossRef]
  28. N. Voloch, T. Ellenbogen, and A. Arie, “Radially symmetric nonlinear photonic crystals,” J. Opt. Soc. Am. B 26, 42–49(2008).
    [CrossRef]
  29. Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
    [CrossRef] [PubMed]

2010 (2)

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

2009 (6)

H. S. Zhu, X. F. Chen, H. Y. Chen, and X. W. Deng, “Formation of domain reversal by direct irradiation with femtosecond laser in lithium niobate,” Chin. Opt. Lett. 7, 169–172 (2009).
[CrossRef]

H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

J. J. Chen and X. F. Chen, “Phase matching in three-dimensional nonlinear photonic crystals,” Phys. Rev. A 80, 013801(2009).
[CrossRef]

2008 (7)

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

N. Voloch, T. Ellenbogen, and A. Arie, “Radially symmetric nonlinear photonic crystals,” J. Opt. Soc. Am. B 26, 42–49(2008).
[CrossRef]

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
[CrossRef] [PubMed]

2007 (3)

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

S. Saltiel, W. Krolikowski, D. Neshev, and Y. S. Kivshar, “Generation of Bessel beams by parametric frequency doubling in annular nonlinear periodic structures,” Opt. Express 15, 4132–4138 (2007).
[CrossRef] [PubMed]

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

2006 (3)

Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, “Annular symmetry nonlinear frequency converters,” Opt. Express 14, 9371–9376 (2006).
[CrossRef] [PubMed]

2005 (1)

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

2004 (1)

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

2003 (1)

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

1999 (1)

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

1998 (1)

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

1994 (1)

S. Fahy and R. Merlin, “Reversal of ferroelectric domains by ultrashort optical pulses,” Phys. Rev. Lett. 73, 1122–1125 (1994).
[CrossRef] [PubMed]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion-equation for congruently grown lithium-niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Aleksandrovsky, A. S.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Alvarez-Garcia, S.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Arie, A.

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

N. Voloch, T. Ellenbogen, and A. Arie, “Radially symmetric nonlinear photonic crystals,” J. Opt. Soc. Am. B 26, 42–49(2008).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
[CrossRef] [PubMed]

D. Kasimov, A. Arie, E. Winebrand, G. Rosenman, A. Bruner, P. Shaier, and D. Eger, “Annular symmetry nonlinear frequency converters,” Opt. Express 14, 9371–9376 (2006).
[CrossRef] [PubMed]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bang, O.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

Baudrier-Raybaut, M.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

Bausa, L. E.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Betzler, K.

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bruner, A.

Chen, H. Y.

Chen, J. J.

J. J. Chen and X. F. Chen, “Phase matching in three-dimensional nonlinear photonic crystals,” Phys. Rev. A 80, 013801(2009).
[CrossRef]

Chen, X.

H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009).
[CrossRef]

Chen, X. F.

Cheng, B. Y.

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Clark, I.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Deng, X. W.

Dong, B. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Dou, J. H.

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Eason, R. W.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion-equation for congruently grown lithium-niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Eger, D.

Ellenbogen, T.

Fahy, S.

S. Fahy and R. Merlin, “Reversal of ferroelectric domains by ultrashort optical pulses,” Phys. Rev. Lett. 73, 1122–1125 (1994).
[CrossRef] [PubMed]

Fischer, R.

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Gao, W. L.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Gao, Z. D.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Garcia-Sole, J.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Gopalan, V.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Gu, B. Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Haidar, R.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

Hu, X. P.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

Jiang, M. H.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Jungk, T.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Kasimov, D.

Kivshar, Y. S.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

S. Saltiel, W. Krolikowski, D. Neshev, and Y. S. Kivshar, “Generation of Bessel beams by parametric frequency doubling in annular nonlinear periodic structures,” Opt. Express 15, 4132–4138 (2007).
[CrossRef] [PubMed]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Kivsharl, Y. S.

Koynov, K.

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

Krolikowski, W.

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
[CrossRef] [PubMed]

S. Saltiel, W. Krolikowski, D. Neshev, and Y. S. Kivshar, “Generation of Bessel beams by parametric frequency doubling in annular nonlinear periodic structures,” Opt. Express 15, 4132–4138 (2007).
[CrossRef] [PubMed]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Kupecek, P.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

Lao, H.

H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009).
[CrossRef]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion-equation for congruently grown lithium-niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Lemasson, P.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

Ma, B. Q.

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Mailis, S.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Merlin, R.

S. Fahy and R. Merlin, “Reversal of ferroelectric domains by ultrashort optical pulses,” Phys. Rev. Lett. 73, 1122–1125 (1994).
[CrossRef] [PubMed]

Ming, N. B.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Molina, P.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Neshev, D.

Neshev, D. N.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
[CrossRef] [PubMed]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Qi, Z.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
[CrossRef]

Qin, Y. Q.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

Ramirez, M. D.

P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Ramirez, M. O.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Rosencher, E.

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

Rosenman, G.

Saltiel, S.

Saltiel, S. M.

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, W. Krolikowski, A. Arie, O. Bang, and Y. S. Kivshar, “Multiorder nonlinear diffraction in frequency doubling processes,” Opt. Lett. 34, 848–850 (2009).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivsharl, “Spatiotemporal toroidal waves from the transverse second-harmonic generation,” Opt. Lett. 33, 527–529(2008).
[CrossRef] [PubMed]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Scott, J. G.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Scrymgeour, D. A.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Shaier, P.

Shakhura, I. E.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Sheng, Y.

Y. Sheng, S. M. Saltiel, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation with fundamental beams of different polarizations,” Opt. Lett. 35, 1317–1319 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Soergel, E.

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Sones, C. L.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Sono, T. J.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

Tunyagi, A. R.

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Ulex, M.

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

Valdivia, C. E.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

Voloch, N.

Voloch-Bloch, N.

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

Vyunishev, A. M.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Wang, J. Y.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Wang, W.

Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
[CrossRef]

Wellington, I. T.

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

Winebrand, E.

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Zaitsev, A. I.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Zamkov, A. V.

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

Zhang, C.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

Zhang, D. Z.

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

Zhang, H. J.

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Zhang, Y.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Zhao, G.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

Zhu, H.

H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009).
[CrossRef]

Zhu, H. S.

Zhu, S. N.

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
[CrossRef]

Zhu, Y. Y.

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

Adv. Funct. Mater. (1)

P. Molina, M. D. Ramirez, and L. E. Bausa, “Strontium barium niobate as a multifunctional two-dimensional nonlinear ‘Photonic Glass’,” Adv. Funct. Mater. 18, 709–715 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

P. Molina, S. Alvarez-Garcia, M. O. Ramirez, J. Garcia-Sole, L. E. Bausa, H. J. Zhang, W. L. Gao, J. Y. Wang, and M. H. Jiang, “Nonlinear prism based on the natural ferroelectric domain structure in calcium barium niobate,” Appl. Phys. Lett. 94, 071111 (2009).
[CrossRef]

Y. Zhang, Z. Qi, W. Wang, and S. N. Zhu, “Quasi-phase-matched Cerenkov second-harmonic generation in a hexagonally poled LiTaO3 waveguide,” Appl. Phys. Lett. 89, 171113 (2006).
[CrossRef]

R. Fischer, S. M. Saltiel, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Broadband femtosecond frequency doubling in random media,” Appl. Phys. Lett. 89, 191105 (2006).
[CrossRef]

Y. Sheng, J. H. Dou, B. Q. Ma, B. Y. Cheng, and D. Z. Zhang, “Broadband efficient second harmonic generation in media with a short-range order,” Appl. Phys. Lett. 91, 011101 (2007).
[CrossRef]

C. E. Valdivia, C. L. Sones, J. G. Scott, S. Mailis, R. W. Eason, D. A. Scrymgeour, V. Gopalan, T. Jungk, E. Soergel, and I. Clark, “Nanoscale surface domain formation on the +z face of lithium niobate by pulsed ultraviolet laser illumination,” Appl. Phys. Lett. 86, 022906 (2005).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Appl. Surf. Sci. (1)

I. T. Wellington, C. E. Valdivia, T. J. Sono, C. L. Sones, S. Mailis, and R. W. Eason, “Ordered nano-scale domains in lithium niobate single crystals via phase-mask assisted all-optical poling,” Appl. Surf. Sci. 253, 4215–4219 (2007).
[CrossRef]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

S. M. Saltiel, Y. Sheng, N. Voloch-Bloch, D. N. Neshev, W. Krolikowski, A. Arie, K. Koynov, and Y. S. Kivshar, “Cerenkov-type second-harmonic generation in two-dimensional nonlinear photonic structures,” IEEE J. Quantum Electron. 45, 1465–1472 (2009).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

H. Lao, H. Zhu, and X. Chen, “Surface ablation of congruent and Mg-doped lithium niobate by femtosecond laser,” Laser Phys. 20, 245–249 (2009).
[CrossRef]

Nature (London) (1)

M. Baudrier-Raybaut, R. Haidar, P. Kupecek, P. Lemasson, and E. Rosencher, “Random quasi-phase-matching in bulk polycrystalline isotropic nonlinear materials,” Nature (London) 432, 374–376 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion-equation for congruently grown lithium-niobate,” Opt. Quantum Electron. 16, 373–375 (1984).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A (2)

A. S. Aleksandrovsky, A. M. Vyunishev, I. E. Shakhura, A. I. Zaitsev, and A. V. Zamkov, “Random quasi-phase-matching in a nonlinear photonic crystal structure of strontium tetraborate,” Phys. Rev. A 78, 031802 (2008).
[CrossRef]

J. J. Chen and X. F. Chen, “Phase matching in three-dimensional nonlinear photonic crystals,” Phys. Rev. A 80, 013801(2009).
[CrossRef]

Phys. Rev. Lett. (7)

S. M. Saltiel, D. N. Neshev, W. Krolikowski, N. Voloch-Bloch, A. Arie, O. Bang, and Y. S. Kivshar, “Nonlinear diffraction from a virtual beam,” Phys. Rev. Lett. 104, 083902 (2010).
[CrossRef] [PubMed]

S. M. Saltiel, D. N. Neshev, R. Fischer, W. Krolikowski, A. Arie, and Y. S. Kivshar, “Generation of second-harmonic conical waves via nonlinear Bragg diffraction,” Phys. Rev. Lett. 100, 103902 (2008).
[CrossRef] [PubMed]

A. R. Tunyagi, M. Ulex, and K. Betzler, “Noncollinear optical frequency doubling in strontium barium niobate,” Phys. Rev. Lett. 90, 243901 (2003).
[CrossRef] [PubMed]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Y. Zhang, Z. D. Gao, Z. Qi, S. N. Zhu, and N. B. Ming, “Nonlinear Cerenkov radiation in nonlinear photonic crystal waveguides,” Phys. Rev. Lett. 100, 163904 (2008).
[CrossRef] [PubMed]

S. Fahy and R. Merlin, “Reversal of ferroelectric domains by ultrashort optical pulses,” Phys. Rev. Lett. 73, 1122–1125 (1994).
[CrossRef] [PubMed]

Y. Q. Qin, C. Zhang, Y. Y. Zhu, X. P. Hu, and G. Zhao, “Wave-front engineering by huygens-fresnel principle for nonlinear optical interactions in domain engineered structures,” Phys. Rev. Lett. 100, 063902 (2008).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The 2D annular NPC which can only provide (b) the transverse RLV G t and consequently generate the conical harmonic with fixed vertex angle, in contrast to (c) the 3D cylindrical NPC that may offer (d) not only the transverse RLV G t but also the longitudinal RLV G l and therefore produce the conical harmonic with arbitrary angle, for example, (e) the toroid and (f) the counterpropagating cone.

Fig. 2
Fig. 2

Dependencies of the transverse and the longitudinal phase-matching periods (Λ with subscripts t and l, respectively) for the ordinary and extraordinary harmonic [Λ with superscripts (o) and (e), respectively] on the diffraction angle θ. For convenience of watching, the inset is extracted from the middle section of the curves that are almost coincident.

Fig. 3
Fig. 3

(a) Cylindrical NPC with aperiodic modulation of the quadratic nonlinear coefficient which may supply (c) multiple transverse and longitudinal RLVs in discrete form and then emit (b) the multiple harmonics in different shapes such as counterpropagating cone, toroid, short-vertex-angle cone.

Fig. 4
Fig. 4

(a) Sectional view of the egglike NPC via programming. (b) Egglike NPC with the denoted center. (c) Generated spherical harmonic. (d) Diagram of the phase-matching condition.

Fig. 5
Fig. 5

Spatial distribution of (a) ordinary, (b) extraordinary, and (c) total second harmonic intensity in LiTaO 3 with r d = 1.7 . Corresponding distribution of total second harmonic intensity with variable r d values, (d) 10 , (e) 1 , (f) 0, (g) 1, and (h) 10.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 k ω + G t + G l = k 2 ω ,
Λ t ( o ) = λ 2 n o , 2 ω sin θ ,
Λ l ( o ) = λ 2 | n o , 2 ω cos θ n o , ω | ,
Λ t ( e ) = λ 2 n 2 ω ( e ) ( θ ) sin θ ,
Λ l ( e ) = λ 2 | n 2 ω ( e ) ( θ ) cos θ n o , ω | ,
n 2 ω ( e ) ( θ ) = n e , 2 ω n o , 2 ω n o , 2 ω 2 sin 2 θ + n e , 2 ω 2 cos 2 θ ,
I 2 ω ( o ) ( d eff ( o ) ) 2 = [ d y y y cos ( φ + 2 γ ) ] 2 ,
I 2 ω ( e ) ( d eff ( e ) ) 2 = [ d y y y cos θ sin ( φ + 2 γ ) + d z y y sin θ ] 2 ,
I 2 ω ( total ) [ r d cos ( φ + 2 γ ) ] 2 + [ r d cos θ sin ( φ + 2 γ ) + sin θ ] 2 .

Metrics