Abstract

The maximum entanglement allowed between two coupled qubits in the steady state established by independent incoherent sources of excitation is reported. Asymmetric configurations where one qubit is excited while the other dissipates the excitation are optimal for entanglement, reaching values three times larger than with thermal sources. The reason is the purification of the steady-state mixture (that includes a Bell state) thanks to the saturation of the pumped qubit. Photon antibunching between the cross emission of the qubits is proposed to experimentally evidence such large degrees of entanglement.

© 2011 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
    [CrossRef]
  2. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).
  3. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
    [CrossRef]
  4. G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed (Springer-Verlag, 2000).
  5. Z. Ficek and R. Tanas, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002).
    [CrossRef]
  6. F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009).
    [CrossRef]
  7. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
    [CrossRef] [PubMed]
  8. Z. Ficek, “Quantum entanglement and disentanglement of multi-atom systems,” Front. Phys. China 5, 26–81 (2010) DOI: 10.1007/s11467-009-0078-7 http://www.springerlink.com/content/11011u097t183821.
    [CrossRef]
  9. D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
    [CrossRef]
  10. M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
    [CrossRef]
  11. L. Jakóbczyk, “Entangling two qubits by dissipation,” J. Phys. A 35, 6383–6392 (2002).
    [CrossRef]
  12. S. Schneider and G. J. Milburn, “Entanglement in the steady state of a collective-angular-momentum (Dicke) model,” Phys. Rev. A 65, 042107 (2002).
    [CrossRef]
  13. F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
    [CrossRef] [PubMed]
  14. L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
    [CrossRef]
  15. J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007).
    [CrossRef]
  16. E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007).
    [CrossRef]
  17. E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
    [CrossRef]
  18. L. D. Contreras-Pulido and R. Aguado, “Entanglement between charge qubits induced by a common dissipative environment,” Phys. Rev. B 77, 155420 (2008).
    [CrossRef]
  19. M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
    [CrossRef]
  20. D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
    [CrossRef]
  21. F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010).
    [CrossRef]
  22. L. Jakóbczyk, “Generation of Werner-like stationary states of two qubits in a thermal reservoir,” J. Phys. B 43, 015502 (2010).
    [CrossRef]
  23. S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic two-qubit states,” Phys. Rev. Lett. 90, 047905(2003).
    [CrossRef] [PubMed]
  24. X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
    [CrossRef]
  25. M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
    [CrossRef] [PubMed]
  26. X. Hao and S. Zhub, “Entanglement generation in trapped atoms,” Eur. Phys. J. D 41, 199–203 (2006).
    [CrossRef]
  27. X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009).
    [CrossRef]
  28. J.-B. Xu and S.-B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72-1–17(2005).
    [CrossRef]
  29. L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006).
    [CrossRef]
  30. S. F. Huelga and M. B. Plenio, “Stochastic resonance phenomena in quantum many-body systems,” Phys. Rev. Lett. 98, 170601(2007).
    [CrossRef]
  31. L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007).
    [CrossRef]
  32. N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007).
    [CrossRef]
  33. A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009).
    [CrossRef]
  34. H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009).
    [CrossRef]
  35. L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009).
    [CrossRef]
  36. J. Li and G. S. Paraoanu, “Generation and propagation of entanglement in driven coupled-qubit systems,” New J. Phys. 11, 113020 (2009).
    [CrossRef]
  37. C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
    [CrossRef]
  38. I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,” Nature (London) 453, 1016–1022(2008).
    [CrossRef]
  39. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
    [CrossRef] [PubMed]
  40. H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
    [CrossRef] [PubMed]
  41. B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
    [CrossRef] [PubMed]
  42. J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
    [CrossRef]
  43. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
    [CrossRef]
  44. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2396 (2000).
    [CrossRef] [PubMed]
  45. S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
    [CrossRef]
  46. S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
    [CrossRef] [PubMed]
  47. J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
    [CrossRef]
  48. A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
    [CrossRef]
  49. E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
    [CrossRef]
  50. E. del Valle, Microcavity Quantum Electrodynamics (VDM Verlag, 2010).
  51. E. del Valle, “Strong and weak coupling of two coupled qubits,” Phys. Rev. A 81, 053811 (2010).
    [CrossRef]
  52. H. J. Carmichael, Statistical Methods in Quantum Optics 1, 2nd ed (Springer, 2002).
  53. F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
    [CrossRef] [PubMed]
  54. H.-J. Briegel and B.-G. Englert, “Quantum optical master equations: The use of damping bases,” Phys. Rev. A 47, 3311–3329 (1993).
    [CrossRef] [PubMed]
  55. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
    [CrossRef]
  56. W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
    [CrossRef]
  57. S. Campbell and M. Paternostro, “Dissipative scheme to approach the boundary of two-qubit entangled mixed states,” Phys. Rev. A 79, 032314 (2009).
    [CrossRef]
  58. O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
    [CrossRef]
  59. M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
    [CrossRef] [PubMed]
  60. E. del Valle, “On the coupling of two quantum dots through a cavity mode,” http://arxiv.org/PS_cache/arxiv/pdf/1007/1007.1784v1.pdf (2010).

2010 (8)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

Z. Ficek, “Quantum entanglement and disentanglement of multi-atom systems,” Front. Phys. China 5, 26–81 (2010) DOI: 10.1007/s11467-009-0078-7 http://www.springerlink.com/content/11011u097t183821.
[CrossRef]

F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010).
[CrossRef]

L. Jakóbczyk, “Generation of Werner-like stationary states of two qubits in a thermal reservoir,” J. Phys. B 43, 015502 (2010).
[CrossRef]

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

E. del Valle, “Strong and weak coupling of two coupled qubits,” Phys. Rev. A 81, 053811 (2010).
[CrossRef]

2009 (11)

S. Campbell and M. Paternostro, “Dissipative scheme to approach the boundary of two-qubit entangled mixed states,” Phys. Rev. A 79, 032314 (2009).
[CrossRef]

A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009).
[CrossRef]

H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009).
[CrossRef]

L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009).
[CrossRef]

J. Li and G. S. Paraoanu, “Generation and propagation of entanglement in driven coupled-qubit systems,” New J. Phys. 11, 113020 (2009).
[CrossRef]

X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009).
[CrossRef]

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009).
[CrossRef]

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

2008 (5)

L. D. Contreras-Pulido and R. Aguado, “Entanglement between charge qubits induced by a common dissipative environment,” Phys. Rev. B 77, 155420 (2008).
[CrossRef]

I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,” Nature (London) 453, 1016–1022(2008).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

2007 (7)

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

S. F. Huelga and M. B. Plenio, “Stochastic resonance phenomena in quantum many-body systems,” Phys. Rev. Lett. 98, 170601(2007).
[CrossRef]

L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007).
[CrossRef]

N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007).
[CrossRef]

J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007).
[CrossRef]

E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007).
[CrossRef]

E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
[CrossRef]

2006 (4)

L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
[CrossRef]

X. Hao and S. Zhub, “Entanglement generation in trapped atoms,” Eur. Phys. J. D 41, 199–203 (2006).
[CrossRef]

L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006).
[CrossRef]

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

2005 (3)

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

J.-B. Xu and S.-B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72-1–17(2005).
[CrossRef]

2003 (3)

S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic two-qubit states,” Phys. Rev. Lett. 90, 047905(2003).
[CrossRef] [PubMed]

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
[CrossRef]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[CrossRef] [PubMed]

2002 (6)

Z. Ficek and R. Tanas, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002).
[CrossRef]

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[CrossRef]

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
[CrossRef]

L. Jakóbczyk, “Entangling two qubits by dissipation,” J. Phys. A 35, 6383–6392 (2002).
[CrossRef]

S. Schneider and G. J. Milburn, “Entanglement in the steady state of a collective-angular-momentum (Dicke) model,” Phys. Rev. A 65, 042107 (2002).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

2001 (3)

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

2000 (1)

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2396 (2000).
[CrossRef] [PubMed]

1999 (2)

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

1998 (1)

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

1993 (1)

H.-J. Briegel and B.-G. Englert, “Quantum optical master equations: The use of damping bases,” Phys. Rev. A 47, 3311–3329 (1993).
[CrossRef] [PubMed]

Abstreiter, G.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Aguado, R.

L. D. Contreras-Pulido and R. Aguado, “Entanglement between charge qubits induced by a common dissipative environment,” Phys. Rev. B 77, 155420 (2008).
[CrossRef]

N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007).
[CrossRef]

Ahn, D.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
[CrossRef]

Amann, M.-C.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

An, J.-H.

J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007).
[CrossRef]

Angelakis, D. G.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

Ansmann, M.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Aragão, A.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

Ashhab, S.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Auffeves, A.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Auyuanet, A.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

Awschalom, D. D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Badolato, A.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Bayer, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Benatti, F.

F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010).
[CrossRef]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[CrossRef] [PubMed]

Benson, O.

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

Bertet, P.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Bialczak, R. C.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Bichler, M.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Blais, A.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Bloch, I.

I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,” Nature (London) 453, 1016–1022(2008).
[CrossRef]

Böhm, G.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Borges, C. V. S.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

Bose, S.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

Bouwmeester, D.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Brandes, T.

N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007).
[CrossRef]

Braun, D.

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[CrossRef]

Briegel, H. J.

L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007).
[CrossRef]

Briegel, H.-J.

L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006).
[CrossRef]

H.-J. Briegel and B.-G. Englert, “Quantum optical master equations: The use of damping bases,” Phys. Rev. A 47, 3311–3329 (1993).
[CrossRef] [PubMed]

Brune, M.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Burkard, G.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Bychkov, A. M.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Calleja, J. M.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Campbell, S.

S. Campbell and M. Paternostro, “Dissipative scheme to approach the boundary of two-qubit entangled mixed states,” Phys. Rev. A 79, 032314 (2009).
[CrossRef]

Carmichael, H. J.

H. J. Carmichael, Statistical Methods in Quantum Optics 1, 2nd ed (Springer, 2002).

Chen, T.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Cheng, W.-W.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Chow, J. M.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Cirac, J. I.

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009).
[CrossRef]

Clark, E. C.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Clark, S. G.

S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic two-qubit states,” Phys. Rev. Lett. 90, 047905(2003).
[CrossRef] [PubMed]

Clarke, J.

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

Cleland, A. N.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Contreras-Pulido, L. D.

L. D. Contreras-Pulido and R. Aguado, “Entanglement between charge qubits induced by a common dissipative environment,” Phys. Rev. B 77, 155420 (2008).
[CrossRef]

Davidovich, L.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

de Dood, M. J. A.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

de Groot, P. C.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

del Valle, E.

E. del Valle, “Strong and weak coupling of two coupled qubits,” Phys. Rev. A 81, 053811 (2010).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
[CrossRef]

E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007).
[CrossRef]

E. del Valle, “On the coupling of two quantum dots through a cavity mode,” http://arxiv.org/PS_cache/arxiv/pdf/1007/1007.1784v1.pdf (2010).

E. del Valle, Microcavity Quantum Electrodynamics (VDM Verlag, 2010).

Devoret, M. H.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

DiVincenzo, D. P.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Dür, W.

L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007).
[CrossRef]

L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006).
[CrossRef]

Eberly, J. H.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

Englert, B.-G.

H.-J. Briegel and B.-G. Englert, “Quantum optical master equations: The use of damping bases,” Phys. Rev. A 47, 3311–3329 (1993).
[CrossRef] [PubMed]

Fafard, S.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Ficek, Z.

Z. Ficek, “Quantum entanglement and disentanglement of multi-atom systems,” Front. Phys. China 5, 26–81 (2010) DOI: 10.1007/s11467-009-0078-7 http://www.springerlink.com/content/11011u097t183821.
[CrossRef]

Z. Ficek and R. Tanas, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002).
[CrossRef]

Finley, J. J.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Floreanini, R.

F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010).
[CrossRef]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[CrossRef] [PubMed]

Forchel, A.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Frunzio, L.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Gallardo, E.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Gambetta, J. M.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Garcia, J. M.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Gardiner, G. W.

G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed (Springer-Verlag, 2000).

Gerardot, B. D.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Girvin, S. M.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Granados, D.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Guo, G. C.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2396 (2000).
[CrossRef] [PubMed]

Guo, J. L.

X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009).
[CrossRef]

Hao, X.

X. Hao and S. Zhub, “Entanglement generation in trapped atoms,” Eur. Phys. J. D 41, 199–203 (2006).
[CrossRef]

Harmans, C. J. P. M.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Haroche, S.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Harrabi, K.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Hartmann, L.

L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007).
[CrossRef]

L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006).
[CrossRef]

Hauke, N.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Hawrylak, P.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

He, J.

H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009).
[CrossRef]

Hennessy, K.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Hinzer, K.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Hor-Meyll, M.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

Horodecki, K.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, M.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, P.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Horodecki, R.

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Houck, A. A.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Hu, E. L.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Huang, X. L.

X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009).
[CrossRef]

Huang, Y.-X.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Huelga, S. F.

A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009).
[CrossRef]

S. F. Huelga and M. B. Plenio, “Stochastic resonance phenomena in quantum many-body systems,” Phys. Rev. Lett. 98, 170601(2007).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

Huguenin, J. A. O.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

Imamoglu, A.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Jakóbczyk, L.

L. Jakóbczyk, “Generation of Werner-like stationary states of two qubits in a thermal reservoir,” J. Phys. B 43, 015502 (2010).
[CrossRef]

L. Jakóbczyk, “Entangling two qubits by dissipation,” J. Phys. A 35, 6383–6392 (2002).
[CrossRef]

James, D. F. V.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

Jelezko, F.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

Jian-Wu, C.

L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
[CrossRef]

Johnson, B. R.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Kaniber, M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Katz, N.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Khoury, A. Z.

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

Kim, M. S.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
[CrossRef]

Knight, P. L.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
[CrossRef]

Koch, J.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Korkusinski, M.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Krenner, H. J.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Kress, A.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Kwiat, P. G.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

Ladd, T. D.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

Laflamme, R.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

Lambert, N.

N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007).
[CrossRef]

Laucht, A.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Laussy, F. P.

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
[CrossRef]

E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007).
[CrossRef]

Lee, J.

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
[CrossRef]

Li, H.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Li, J.

J. Li and G. S. Paraoanu, “Generation and propagation of entanglement in driven coupled-qubit systems,” New J. Phys. 11, 113020 (2009).
[CrossRef]

Li, S.-B.

J.-B. Xu and S.-B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72-1–17(2005).
[CrossRef]

Liu, J.-B.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Liu, S.

H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009).
[CrossRef]

Liu, T.-K.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Lodahl, P.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Loss, D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Lucero, E.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Luo, H.-G.

J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007).
[CrossRef]

Maioli, P.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Majer, J.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Mancini, S.

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

Mao-Fa, F.

L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
[CrossRef]

Martinez, L. J.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Martinis, J. M.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Marzolino, U.

F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010).
[CrossRef]

McDermott, R.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Milburn, G. J.

S. Schneider and G. J. Milburn, “Entanglement in the steady state of a collective-angular-momentum (Dicke) model,” Phys. Rev. A 65, 042107 (2002).
[CrossRef]

Monroe, C.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

Mooij, J. E.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Munro, W. J.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

Nakamura, Y.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Neeley, M.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

Niskanen, A. O.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Nori, F.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Nowak, A. K.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

O’Brien, J. L.

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

Osnaghi, S.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Oxtoby, N. P.

A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009).
[CrossRef]

Paraoanu, G. S.

J. Li and G. S. Paraoanu, “Generation and propagation of entanglement in driven coupled-qubit systems,” New J. Phys. 11, 113020 (2009).
[CrossRef]

Parkins, A. S.

S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic two-qubit states,” Phys. Rev. Lett. 90, 047905(2003).
[CrossRef] [PubMed]

Paternostro, M.

S. Campbell and M. Paternostro, “Dissipative scheme to approach the boundary of two-qubit entangled mixed states,” Phys. Rev. A 79, 032314 (2009).
[CrossRef]

Patnaik, A. K.

L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009).
[CrossRef]

Petroff, P. M.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Piani, M.

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[CrossRef] [PubMed]

Picot, T.

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

Plenio, M. B.

S. F. Huelga and M. B. Plenio, “Stochastic resonance phenomena in quantum many-body systems,” Phys. Rev. Lett. 98, 170601(2007).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

Postigo, P. A.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Prieto, I.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Raimond, J. M.

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

Rivas, A.

A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009).
[CrossRef]

Sabathil, M.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Sarkar, D.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Schneider, S.

S. Schneider and G. J. Milburn, “Entanglement in the steady state of a collective-angular-momentum (Dicke) model,” Phys. Rev. A 65, 042107 (2002).
[CrossRef]

Schoelkopf, R. J.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Schreier, J. A.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Schuh, D.

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

Schuster, D. I.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Shan, C.-J.

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

Sherwin, M.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Small, A.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

Song, H. S.

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
[CrossRef]

Steffen, M.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

Stern, O.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Stobbe, S.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Strauf, S.

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

Taboada, A. G.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Tanas, R.

Z. Ficek and R. Tanas, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002).
[CrossRef]

Tejedor, C.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
[CrossRef]

E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007).
[CrossRef]

Troiani, F.

E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
[CrossRef]

van der Meulen, H. P.

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

Verstraete, F.

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009).
[CrossRef]

Villas-Bôas, J. M.

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

Wallraff, A.

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Wang, H.

H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009).
[CrossRef]

Wang, S.-J.

J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007).
[CrossRef]

Wasilewski, Z. R.

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Weig, E. M.

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

White, A. G.

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

Wilhelm, F. K.

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

Wolf, M. M.

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009).
[CrossRef]

Wootters, W. K.

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Xiang-Ping, L.

L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
[CrossRef]

Xiao-Juan, Z.

L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
[CrossRef]

Xu, J.-B.

J.-B. Xu and S.-B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72-1–17(2005).
[CrossRef]

Yamamoto, Y.

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

Yang, G. H.

L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009).
[CrossRef]

Yi, X. X.

X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009).
[CrossRef]

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
[CrossRef]

Yu, C. S.

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
[CrossRef]

Yu, T.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

Zheng, S. B.

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2396 (2000).
[CrossRef] [PubMed]

Zhou, L.

L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009).
[CrossRef]

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
[CrossRef]

Zhub, S.

X. Hao and S. Zhub, “Entanglement generation in trapped atoms,” Eur. Phys. J. D 41, 199–203 (2006).
[CrossRef]

Zoller, P.

G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed (Springer-Verlag, 2000).

Chin. Phys. Lett. (1)

L. Xiang-Ping, F. Mao-Fa, Z. Xiao-Juan, and C. Jian-Wu, “Quantum entanglement in a system of two spatially separated atoms coupled to the thermal reservoir,” Chin. Phys. Lett. 23, 3138–3141 (2006).
[CrossRef]

Eur. Phys. J. B (1)

A. Rivas, N. P. Oxtoby, and S. F. Huelga, “Stochastic resonance phenomena in spin chains,” Eur. Phys. J. B 69, 51–57 (2009).
[CrossRef]

Eur. Phys. J. D (1)

X. Hao and S. Zhub, “Entanglement generation in trapped atoms,” Eur. Phys. J. D 41, 199–203 (2006).
[CrossRef]

Europhys. Lett. (2)

D. G. Angelakis, S. Bose, and S. Mancini, “Steady-state entanglement between hybrid light-matter qubits,” Europhys. Lett. 85, 20007 (2009).
[CrossRef]

E. del Valle, F. P. Laussy, and C. Tejedor, “Electrostatic control of quantum dot entanglement induced by coupling to external reservoirs,” Europhys. Lett. 80, 57001 (2007).
[CrossRef]

Front. Phys. China (1)

Z. Ficek, “Quantum entanglement and disentanglement of multi-atom systems,” Front. Phys. China 5, 26–81 (2010) DOI: 10.1007/s11467-009-0078-7 http://www.springerlink.com/content/11011u097t183821.
[CrossRef]

Int. J. Theor. Phys. (1)

C.-J. Shan, T. Chen, J.-B. Liu, W.-W. Cheng, T.-K. Liu, Y.-X. Huang, and H. Li, “Controlling sudden birth and sudden death of entanglement at finite temperature,” Int. J. Theor. Phys. 49, 717–727 (2010).
[CrossRef]

J. Phys. A (1)

L. Jakóbczyk, “Entangling two qubits by dissipation,” J. Phys. A 35, 6383–6392 (2002).
[CrossRef]

J. Phys. B (1)

L. Jakóbczyk, “Generation of Werner-like stationary states of two qubits in a thermal reservoir,” J. Phys. B 43, 015502 (2010).
[CrossRef]

Nature (London) (4)

T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, “Quantum computers,” Nature (London) 464, 45–53 (2010).
[CrossRef]

I. Bloch, “Quantum coherence and entanglement with ultracold atoms in optical lattices,” Nature (London) 453, 1016–1022(2008).
[CrossRef]

J. Clarke and F. K. Wilhelm, “Superconducting quantum bits,” Nature (London) 453, 1031–1042 (2008).
[CrossRef]

J. Majer, J. M. Chow, J. M. Gambetta, J. Koch, B. R. Johnson, J. A. Schreier, L. Frunzio, D. I. Schuster, A. A. Houck, A. Wallraff, A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Coupling superconducting qubits via a cavity bus,” Nature (London) 449, 443–447 (2007).
[CrossRef]

Nature Phys. (1)

F. Verstraete, M. M. Wolf, and J. I. Cirac, “Quantum computation and quantum-state engineering driven by dissipation,” Nature Phys. 5, 633–636 (2009).
[CrossRef]

New J. Phys. (3)

J.-B. Xu and S.-B. Li, “Control of the entanglement of two atoms in an optical cavity via white noise,” New J. Phys. 7, 72-1–17(2005).
[CrossRef]

L. Hartmann, W. Dür, and H. J. Briegel, “Entanglement and its dynamics in open, dissipative systems,” New J. Phys. 9, 230(2007).
[CrossRef]

J. Li and G. S. Paraoanu, “Generation and propagation of entanglement in driven coupled-qubit systems,” New J. Phys. 11, 113020 (2009).
[CrossRef]

Phys. Rep. (1)

Z. Ficek and R. Tanas, “Entangled states and collective nonclassical effects in two-atom systems,” Phys. Rep. 372, 369–443 (2002).
[CrossRef]

Phys. Rev. A (13)

M. S. Kim, J. Lee, D. Ahn, and P. L. Knight, “Entanglement induced by a single-mode heat environment,” Phys. Rev. A 65, 040101(R) (2002).
[CrossRef]

S. Schneider and G. J. Milburn, “Entanglement in the steady state of a collective-angular-momentum (Dicke) model,” Phys. Rev. A 65, 042107 (2002).
[CrossRef]

L. Hartmann, W. Dür, and H.-J. Briegel, “Steady-state entanglement in open and noisy quantum systems,” Phys. Rev. A 74, 052304 (2006).
[CrossRef]

M. Hor-Meyll, A. Auyuanet, C. V. S. Borges, A. Aragão, J. A. O. Huguenin, A. Z. Khoury, and L. Davidovich, “Environment-induced entanglement with a single photon,” Phys. Rev. A 80, 042327 (2009).
[CrossRef]

L. Zhou, G. H. Yang, and A. K. Patnaik, “Spontaneously generated atomic entanglement in free space reinforced by incoherent pumping,” Phys. Rev. A 79, 062102 (2009).
[CrossRef]

F. Benatti, R. Floreanini, and U. Marzolino, “Entangling two unequal atoms through a common bath,” Phys. Rev. A 81, 012105(2010).
[CrossRef]

X. L. Huang, J. L. Guo, and X. X. Yi, “Nonequilibrium thermal entanglement in a three-qubit xx model,” Phys. Rev. A 80, 054301 (2009).
[CrossRef]

X. X. Yi, C. S. Yu, L. Zhou, and H. S. Song, “Noise-assisted preparation of entangled atoms,” Phys. Rev. A 68, 052304(2003).
[CrossRef]

E. del Valle, “Strong and weak coupling of two coupled qubits,” Phys. Rev. A 81, 053811 (2010).
[CrossRef]

W. J. Munro, D. F. V. James, A. G. White, and P. G. Kwiat, “Maximizing the entanglement of two mixed qubits,” Phys. Rev. A 64, 030302(R) (2001).
[CrossRef]

S. Campbell and M. Paternostro, “Dissipative scheme to approach the boundary of two-qubit entangled mixed states,” Phys. Rev. A 79, 032314 (2009).
[CrossRef]

O. Benson and Y. Yamamoto, “Master-equation model of a single-quantum-dot microsphere laser,” Phys. Rev. A 59, 4756–4763 (1999).
[CrossRef]

H.-J. Briegel and B.-G. Englert, “Quantum optical master equations: The use of damping bases,” Phys. Rev. A 47, 3311–3329 (1993).
[CrossRef] [PubMed]

Phys. Rev. B (6)

A. Laucht, J. M. Villas-Bôas, S. Stobbe, N. Hauke, F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann, M. Kaniber, and J. J. Finley, “Mutual coupling of two semiconductor quantum dots via an optical nanocavity,” Phys. Rev. B 82, 075305 (2010).
[CrossRef]

E. Gallardo, L. J. Martinez, A. K. Nowak, D. Sarkar, H. P. van der Meulen, J. M. Calleja, C. Tejedor, I. Prieto, D. Granados, A. G. Taboada, J. M. Garcia, and P. A. Postigo, “Optical coupling of two distant InAs/GaAs quantum dots by a photonic-crystal microcavity,” Phys. Rev. B 81, 193301 (2010).
[CrossRef]

S. Ashhab, A. O. Niskanen, K. Harrabi, Y. Nakamura, T. Picot, P. C. de Groot, C. J. P. M. Harmans, J. E. Mooij, and F. Nori, “Interqubit coupling mediated by a high-excitation-energy quantum object,” Phys. Rev. B 77, 014510 (2008).
[CrossRef]

N. Lambert, R. Aguado, and T. Brandes, “Nonequilibrium entanglement and noise in coupled qubits,” Phys. Rev. B 75, 045340(2007).
[CrossRef]

E. del Valle, F. P. Laussy, F. Troiani, and C. Tejedor, “Entanglement and lasing with two quantum dots in a microcavity,” Phys. Rev. B 76, 235317 (2007).
[CrossRef]

L. D. Contreras-Pulido and R. Aguado, “Entanglement between charge qubits induced by a common dissipative environment,” Phys. Rev. B 77, 155420 (2008).
[CrossRef]

Phys. Rev. E (1)

H. Wang, S. Liu, and J. He, “Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine,” Phys. Rev. E 79, 041113 (2009).
[CrossRef]

Phys. Rev. Lett. (12)

S. F. Huelga and M. B. Plenio, “Stochastic resonance phenomena in quantum many-body systems,” Phys. Rev. Lett. 98, 170601(2007).
[CrossRef]

M. B. Plenio and S. F. Huelga, “Entangled light from white noise,” Phys. Rev. Lett. 88, 197901 (2002).
[CrossRef] [PubMed]

S. G. Clark and A. S. Parkins, “Entanglement and entropy engineering of atomic two-qubit states,” Phys. Rev. Lett. 90, 047905(2003).
[CrossRef] [PubMed]

F. Benatti, R. Floreanini, and M. Piani, “Environment induced entanglement in Markovian dissipative dynamics,” Phys. Rev. Lett. 91, 070402 (2003).
[CrossRef] [PubMed]

D. Braun, “Creation of entanglement by interaction with a common heat bath,” Phys. Rev. Lett. 89, 277901 (2002).
[CrossRef]

S. Osnaghi, P. Bertet, A. Auffeves, P. Maioli, M. Brune, J. M. Raimond, and S. Haroche, “Coherent control of an atomic collision in a cavity,” Phys. Rev. Lett. 87, 037902 (2001).
[CrossRef] [PubMed]

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. DiVincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83, 4204–4207 (1999).
[CrossRef]

S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2396 (2000).
[CrossRef] [PubMed]

H. J. Krenner, M. Sabathil, E. C. Clark, A. Kress, D. Schuh, M. Bichler, G. Abstreiter, and J. J. Finley, “Direct observation of controlled coupling in an individual quantum dot molecule,” Phys. Rev. Lett. 94, 057402 (2005).
[CrossRef] [PubMed]

B. D. Gerardot, S. Strauf, M. J. A. de Dood, A. M. Bychkov, A. Badolato, K. Hennessy, E. L. Hu, D. Bouwmeester, and P. M. Petroff, “Photon statistics from coupled quantum dots,” Phys. Rev. Lett. 95, 137403 (2005).
[CrossRef] [PubMed]

F. P. Laussy, E. del Valle, and C. Tejedor, “Strong coupling of quantum dots in microcavities,” Phys. Rev. Lett. 101, 083601 (2008).
[CrossRef] [PubMed]

W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998).
[CrossRef]

Physica A (Amsterdam) (1)

J.-H. An, S.-J. Wang, and H.-G. Luo, “Entanglement dynamics of qubits in a common environment,” Physica A (Amsterdam) 382, 753–764 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

R. Horodecki, P. Horodecki, M. Horodecki, and K. Horodecki, “Quantum entanglement,” Rev. Mod. Phys. 81, 865–942 (2009).
[CrossRef]

Science (3)

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323, 598–601 (2009).
[CrossRef] [PubMed]

M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero, R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J. M. Martinis, “Measurement of the entanglement of two superconducting qubits via state tomography,” Science 313, 1423–1425 (2006).
[CrossRef] [PubMed]

M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001).
[CrossRef] [PubMed]

Other (5)

H. J. Carmichael, Statistical Methods in Quantum Optics 1, 2nd ed (Springer, 2002).

E. del Valle, Microcavity Quantum Electrodynamics (VDM Verlag, 2010).

E. del Valle, “On the coupling of two quantum dots through a cavity mode,” http://arxiv.org/PS_cache/arxiv/pdf/1007/1007.1784v1.pdf (2010).

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

G. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Scheme of the two coupled qubits or two-level systems (a) and their energy levels (b), with coupling (g), pumping ( P i ), and decay parameters ( γ i ).

Fig. 2
Fig. 2

(a) Distribution in the C S L plane of all the possible two-qubit configurations (shaded region). The thin solid line corresponds to the maximum C for a given S L in a general bipartite system. The dashed blue line corresponds to the optimal configuration ( r 1 = 1 , r 2 = 0 , Γ 1 = Γ 2 = Γ , see Eq. (8), a good approximation to the maximal C versus S L in our system (with the exception of the dark blue region above). Below, in dark purple, the particular case of thermal baths. (b) C (solid black) and S L (dashed red) for the optimal case as a function of α = Δ 2 + Γ 2 / g . In inset (c), the nonentangled contributions to the steady state: R ˜ 1 (dotted brown), R ˜ 2 (dashed purple) and R ˜ (solid blue). The shaded area represents R ˜ ψ (as R ˜ ψ + R ˜ = 1 ). Idem in (d) and (e), but for two thermal baths at infinite and zero temperatures: r 1 = 1 / 2 , r 2 = 0 . The vertical guide lines mark the points where entanglement appears and where it is maximum, close to the points where R ˜ is minimum and R ˜ approaches R ˜ 1 , respectively.

Fig. 3
Fig. 3

Contour plots of concurrence C as a function of Γ 1 / g and Γ 2 / g for (a) r 1 = 1 , r 2 = 0 and (b) r 1 = 1 / 2 , r 2 = 0 . To the left of the white lines, C = 0 . The maximum value achieved with this system is in (a), C max 31 % . In (b), with thermal baths, concurrence rises up to C 10 % for an asymmetric configuration. (c) Idem but for the case of coherent excitation of the first qubit (with strength Ω 1 ), Γ 1 = 0 and r 2 = 0 .

Fig. 4
Fig. 4

Distribution in the C δ plane of all the possible qubit configurations (shaded region). The thin solid and dotted lines correspond to different examples of entangled mixed states, with | ψ (see the main text). The pure state | ψ corresponds to the extreme point ( 1 / 4 , 1 ) . The dashed blue line corresponds to the configuration ( r 1 = 1 , r 2 = 0 , Γ 1 = Γ 2 = Γ , increasing Γ anticlockwise) which encloses all possible realizations. Inside, in dark purple, the particular case of thermal reservoirs. Inset, C versus n 1 for thermal reservoirs (where n 1 < 0.5 , in dark purple) and for those configurations where δ > 0.04 (in blue). The dashed blue line ( r 1 = 1 , r 2 = 0 , Γ 1 = Γ 2 = Γ ) goes clockwise with increasing Γ.

Fig. 5
Fig. 5

Effect of dephasing on the results for opposite reservoirs ( r 1 = 1 , r 2 = 0 , Γ 1 = Γ 2 = Γ ), of C (a) and δ (b) as a function of Γ. The set of curves corresponds to values of γ d from 0 to 20 g , increasing in steps of 2 g . Entanglement (a) is diminished by pure dephasing, going from top to bottom curves, and the maximum is reached at higher Γ s (see the dashed line, joining the maxima of all curves). The maximum δ remains 1 / 16 for all values of dephasing although this is reached for lower Γ s .

Fig. 6
Fig. 6

(a) Maximum of the concurrence (solid black) and the corresponding linear entropy (dashed red) as a function of the cavity decay rate γ cav / G cav in the case where the coupling between the qubits is mediated by a cavity mode. The qubits are coupled to the cavity mode with strength G cav and largely detuned from it by Δ cav = 10 G cav so that their effective coupling is g eff 0.1 G cav . The qubits are optimally pumped with α = ( 1 + 5 ) g eff . (b) The same quantities as in (a) are plotted, together with the cavity population n cav (dotted), as a function of the detuning Δ cav / G cav for the case of γ cav = 2 G cav . The limit C max (horizontal guide line) is recovered at large detunings.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

H = Δ σ 2 σ 2 + g ( σ 1 σ 2 + σ 2 σ 1 ) ,
t ρ = i [ ρ , H ] + i = 1 2 [ γ i 2 L σ i + P i 2 L σ i + γ i d 2 L σ i σ i ] ρ ,
γ i = Γ i ( 1 r i ) , P i = Γ i r i ( i = 1 , 2 ) .
ρ = ( ρ 00 0 0 0 0 ρ 11 ρ 12 0 0 ρ 12 * ρ 22 0 0 0 0 ρ 33 ) with { ρ 00 = 1 n 1 n 2 + n 1 n 2 , ρ i i = n i n 1 n 2 , i = 1 , 2 , ρ 12 = n 12 * , ρ 33 = n 1 n 2 ,
ρ = ρ 00 | 0 0 | + ρ 33 | 3 3 | + R 1 | 1 1 | + R 2 | 2 2 | + R ψ | ψ ψ |
R ˜ i = | R i | ρ 00 + ρ 33 + | R 1 | + | R 2 | + R ψ ,
α e i β ( Δ i Γ ) / g ,
C = 2 Max [ { 0 , α 1 4 + α 2 } ] = Max [ { 0 , 3 S L 2 ( 1 3 S L 2 + 1 3 S L 4 ) 3 S L 4 1 + 1 3 S L 4 } ] ,
S L = 16 3 3 + α 2 ( 4 + α 2 ) 2 .
C max = ( 5 1 ) / 4 31 % ,
C = Max [ { 0 , α 9 / 4 + α 2 / 2 4 + α 2 } ] ,
S L = 39 + 2 α 2 ( 9 + α 2 ) 3 ( 4 + α 2 ) 2 .
δ n 1 n 2 n 1 n 2 = ρ 11 ρ 22 ρ 00 ρ 33 .
δ = ( α 4 + α 2 ) 2 .
C ± ( δ ) = 2 2 δ 1 ± 1 16 δ 8 δ 2 δ 1 ± 1 16 δ .

Metrics